Роль теории более или менее ясна. А эксперимент, его значение? Конечно, это строгий контролер и отбраковщик теоретических концепций. Однако связь теории и эксперимента далеко не так тривиальна, как это может показаться с первого взгляда. Ведь, строго говоря, никогда нельзя доказать справедливость данной теории, хотя ее несправедливость можно установить экспериментами.
Предположим, собраны факты и построена теория, их объясняющая. С помощью этой теории мы можем сделать ряд предсказаний и проверить их в новых экспериментах. Если мы сделали 10 предсказаний и 9 из них проверили экспериментально, это еще не доказывает, что данная теория правильна: может оказаться, что десятое предсказание ошибочно! Однако в этой неудаче будет содержаться и своего рода успех, так как мы теперь будем точно знать, где именно теория несостоятельна.
Теория и эксперимент, их двуединство весьма и весьма плодотворно для развития физики. Тесное взаимодействие фактов и осмысления ставит множество методологических и философских проблем. Одна из них такова.
Сколько же экспериментальных фактов (долой лишние!)
необходимо для теории? Какими должны быть эти факты? Вообще, какова оптимальная дозировка в смеси "эксперимент - теория"?
Физики уже не раз ставили перед собой подобные вопросы. Д. Блохинцев, например, отвечая на вопрос журналиста: "Что же мешает созданию новой всеобъемлющей теории элементарных частиц?" - говорил (1971) так:
"Нам трудно сейчас решить, в чем дело. Не хватает ли глубины понимания явлений, идеи, которая могла бы пролить свет на весь огромный комплекс фактов, или не хватает самих фактов?.."
Приводил он тогда примеры и из истории физики. Пока физики не дошли до понимания того, что существуют молекулы и атомы (теоретическая концепция!), не было и понимания различий между газообразными, жидкими и твердыми телами.
А вот противоположный пример, где видна зависимость теории от эксперимента. Пока Э. Резерфорд не обнаружил экспериментально атомного ядра, не было и предпосылок для создания планетарной модели атомов, работа у теоретиков не двигалась.
Изучение природы ставит перед исследователями непростые проблемы. Мы в этой книге много говорили о теоретиках, об их геройствах, научных подвигах. Пытались мы (в этой главе) разглядеть и фигуру экспериментатора. Осознали и то, что, по пословице, один экспериментатор (во всяком случае, при работе на ускорителях!) в поле не воин. Теперь же хотелось бы сравнить значимость этих главных фигур на шахматной доске физики.
Впрочем, может быть, такое сопоставление бестактно и бессмысленно? Один журналист высказался в том духе, что сравнивать роль теоретика и экспериментатора столь же глупо, как и обращаться к ребенку с запрещенным вопросом: "Кого ты больше любишь - маму или папу?"
Это одна точка зрения. Но есть и другие. Существует, к примеру, "доктрина экспериментпзма". Она утверждает главенствующую роль эксперимента. В свое время экспериментпсты доказывали, что вся теория относительности целиком выросла in одиого-единственного опыта американского физика А. Майкельсона, в котором он с величайшей точностью установил независимость скорости света от скорости движения Земли (1881), перечеркнув тем самым гипотезу о мировом эфире.
Взгляды экспериментизма, понятно, развивают в основном экспериментаторы. Теоретики же, естественно, остаются при своем мнении. Они отмечают одну интересную особенность развития физики XX века. Говорят о том, что в этом столетии произошел резкий сдвиг в равновесии между теоретической и экспериментальной физикой.
Говорят о тенденции к господству теории над экспериментом.
Действительно, современная теоретическая физика в основном уже недоступна пониманию большинства физиков-экспериментаторов - во всяком случае, без соответствующих пояснений. И хотя не "предусмотренные" теоретиками и идущие вразрез с теорией экспериментальные открытия еще случаются, главные усилия экспериментаторов сегодня направлены на проверку теоретических гипотез.
Оно и понятно! Отдельному физику-экспериментатору (и даже большим группам физиков) трудно получить доступ к оборудованию, где приборы-ускорители стали размером с Лужники, где необходимо обрабатывать миллионы фотографий ради одной, подтверждающей идею, пришедшую в голову теоретику. А главное: экспериментаторы получают ныне дорогостоящее и сложное оборудование только в том случае, если докажут, что их опыты будут иметь то или другое отношение к господствующим в физике теориям.
Эксперимент активный и пассивный
В мае 1976 года в Серпухове (ИФВЗ) состоялось международное совещание физиков. Тогда рассматривалась возможность строительства силами многих стран самого большого ускорителя - "мировой машины", с энергией 10^4 ГзВ и диаметром до 30 километров.
"Суперускоритель? А cтоит ли его возводить? - тотчас же раздались сердитые голоса. - Стоит ли столь крупная игра свеч? Не есть ли это просто монументальные безделушки, созданные, чтобы удовлетворить ненасытную любознательность ученых? Да и дорого! Где взять необходимые средства? Ведь известно, что стоимость среднего эксперимента на ускорителях составляет порядка миллиона рублей, и, по-видимому, в ближайшие годы эта цифра станет еще больше".
И раздаются призывы вернуться от активного эксперимента к пассивному, скажем, больше внимания уделять космическим лучам.
"Но ускоритель, - возражают сторонники активных экспериментов, - дает 10^12-10^13 ускоренных частиц в секунду в виде тонкого (тоньше карандаша) управляемого пучка, в то время как поток космических лучей сильно разрежен (очень энергичные частицы - по стандартам, достигнутым на ускорителях встречаются тут одна на квадратный километр за год!) и неуправляем".
"Зато, - отвечают приверженцы пассивных действий, - создание лаборатории для исследования космических лучей стоит столько, сколько уходит на проведение лишь одного значительного эксперимента на ускорителе!"
В этих словах, конечно, есть своя сермяжная правда.
Академик Я. Зельдович как-то шутил, что ранняя горячая Вселенная (в известной мере космические лучи - это отголоски тех далеких бурных времен) - это природный ускоритель для "бедного человечества", которое пока не может на Земле создать такие условия.
Исследования космиков (так называют себя те, кто ловит космические лучи) уже не раз давали интереснейшие результаты.
В 1964 году в фотоэмульсии, поднятой в стратосферу, было обнаружено событие, в котором родилось сразу около 150 квантов. Это значит, что энергия прилетевшей из космоса первичной частицы равнялась 10^6 ГэВ! Анализ этого явления дал много ценного, и ему было присвоено собственное имя "Одинокая звезда Техаса".
Регистрировались и другие одиночные события, которым были присвоены экзотические названия: "Андромеда", "Кентавр". Подобные явления указывают на существование в природе сверхтяжелых частиц с массами до 200 ГэВ. Возможно, однажды так будет обнаружен и легендарный магнитный монополь...
Другая ветвь пассивных экспериментов, на удивление, не только не хочет иметь дело с космическими лучами, но прямо-таки стремится от них всячески избавиться: напрочь исключить их присутствие.
К этому обычно стремятся ловцы нейтрино, этих практически неуловимых, вертких частиц, для которых, казалоcь бы, не существует никаких преград (они с легкостью способны пронзить земной шар и не провзаимодействовать при этом ни с одной из повстречавшихся им на пути частиц).