- Ни одного, - спокойно ответствовал рассказчик.
- Разве это не слишком мало? - ехидно заметила девушка.
И это замечание нисколько не смутило лорда-охотника, он невозмутимо парировал:
- Только когда речь идет не о львах!..
Подобное можно было бы сказать и про результаты научной охоты за кварками: они оказались настоящим львом микромира!
Золотыми буквами
В декабре 1934 года маленькая охотничья экспедиция - американский писатель Э. Хемингуэй, его жена, друзья и следопыты-африканцы - выехала из Момбасы (Восточная Африка, порт в Кении на побережье Индийского океана) и двинулась на северо-запад через плато Серенгеттн, откуда повернула на юг, к озеру Маньяра.
Путешествуя по Африке, Э. Хемингуэй и его спутники охотились на самых разных зверей - львов, леопардов, антилоп, носорогов, газелей.
Позднее в книге "Зеленые холмы Африки" писатель очень ярко и точно описал все подробности этой охоты.
Этой книгой Э. Хемингуэй провел своеобразный писательский эксперимент: он попытался создать "абсолютно правдивую книгу", не используя при этом ни одного вымышленного образа или события. И преуспел в этом.
Жаль, что, когда - в середине 60-х годов - началась (продолжается она и поныне) экспериментальная охота за кварками, в ней не принял участия какой-нибудь писатель ранга Э. Хемингуэя, который поставил бы себе целью выяснить, может ли правдивое изображение научных событий - без прикрас и без разговоров о любви главных героев! - "соперничать с творческим вымыслом".
(Конечно, охота обычная и охота научная не одно и то же. Э. Хемингуэй прекрасно владел ружьем, бил птицу и зверя без промаха, поэтому он мог фиксировать и потом запечатлеть в книге даже самые мельчайшие детали охоты. Представить же писателя, который мог бы стать полноправным участником физических экспериментов, да при этом держал бы в голове все хитросплетения теоретических нитей, да еще бы виртуозно владел словом, представить себе такого писателя трудно.
Но это вовсе не означает, что в будущем не появятся научные Хемингуэи, способные осуществить экспедицию в любой, самый удаленный уголок микромира и убедительно, с полным знанием дела, красочно рассказать об этом, даже если охотиться им придется за "звврьми", не уступающими кваркам по изворотливости и неуловимости.)
...В те жаркие 60-е годы кварками интересовались не только физики геологи, биологи, химики тоже часто произносили это слово. Но, понятно, особенно волновались и суетились, принимая все это слишком близко к сердцу, научные журналисты. Они жадно прислушивались к свежим новостям, вникая, казалось бы, в неуместные подробности, судорожно перелистывали даже сверхспециальные статьи научной периодики в надежде, что наконец-то промелькнет сенсационное сообщение.
Тема кварков властно захватила тогда многих.
А ситуация оставалась противоречивой.
Нетерпеливые и скорые на мысль теоретики уверенно (и с каждым днем все более: их схемы работали все лучше и лучше) говорили "да": кварки должны, просто обязаны были существовать в природе. Теоретикам возражали экспериментаторы. Более спокойные и не торопящиеся с окончательными выводами, они твердили "нет":
пока в экспериментах обнаружить кварки никак не удавалось.
"Рождение", "выживание" или "гибель" гипотез при их столкновении с данными опыта - дело в науке довольно обычное. И никто не станет пенять теоретику, если его научная версия не оправдалась. Гораздо сложнее положение экспериментатора: ошибаться ему не след, хоть такое и случается порой. С экспериментатора спрос больше, но зато ему больше и веры.
Вообще, заметим, что в неразлучной паре "теория - эксперимент", как бы результативна и плодовита ни была теоретическая мысль, все же считается, что решающее слово остается за экспериментатором - он ближе к природе!
На этот счет у физиков есть такая шутка. Они говорят, что различие между теоретиком и экспериментатором заключается в том, что результату теоретика обычно не верит никто, кроме него самого, а результату экспериментатора обычно доверяют все, кроме самого экспериментатора.
"Нет", - в вопросе о существовании кварков слово экспериментаторов было решающим. Какие тут могут быть разговоры! Для доказательства есть только один путь: кварки необходимо было представить научному миру, так сказать, живьем.
Кварки, какая бы это была ценная добыча! Пойманные кварки очень быстро перекочевали бы со страниц узкоспециализированных научных журналов в монографии. Потом в текст университетских и вузовских лекций. Затем и в школьные учебники. О кварках, об этом фундаменте материи, громогласно возвестило бы радио, их показывали бы (в рисунках, схемах) по телевидению, о них рассказывала бы многочисленная армия лекторов, их бы разобрали по .винтикам и вывернули бы наизнанку популяризаторы науки.
А такой чести удостаивается не каждое научное достижение. Открытий в наш век сделано слишком много, о всех не расскажешь. Но кварки! Открытие кварков стало бы подлинным триумфом науки. Оно было бы записано в ней золотыми буквами, попало бы во все учебники и, несомненно, осталось бы в них на ближайшие, скажем, сотни лет.
Опыт Милликена
Итак, очень многие жаждали поймать хотя бы один кварк. И дело это вроде бы не должно было доставить много хлопот: кварки же ведь существа весьма экзотичные, и выделить их будет несложно.
Главное - у кварков дробный электрический заряд (дробным, кстати, является и их барионный заряд; + 1/3), что и должно существенно облегчить их наблюдение. Эта дробность не позволяет им исчезнуть: распасться на обычные частицы (электроны, например), обладающие целым или нулевым зарядом. Иначе нарушился бы закон сохранения зарядов - один из краеугольных камней физики. Все эти рассуждения значили одно: кварки должны быть стабильными частицами. Если они существуют, то должны быть везде.
И их, как только была выдвинута кварковая гипотеза, принялись искать повсюду - на поверхности Земли, в океанах, в космических лучах, на ускорителях элементарных частиц.
Но, допустим, кварк у нас в руках: в той горстке материи, что мы держим. Как отличить его от других частиц? Какой для этого использовать метод?
И здесь вспомнили про то, как был измерен заряд электрона. Сделал это в 1911 году американский физикэкспериментатор Р. Милликен (1868-1953).
Р. Милликен был ученым с некоторыми странностями. Он один из немногих, кто упорно пытался примирить религию и науку. В колледже (другой пример эксцентричности) он специализировался по греческому языку и в физику влюбился только в университетские годы. Но уж зато экспериментатором Р. Милликен был первоклассным.
Дж. Томсон, мы помним, открыл электрон, а вот измерил его заряд, да еще с прецизионной точностью, именно Р. Милликен. За это в 1923 году он был удостоен Нобелевской премии. Его опыт был элегантен, красив, точен, наивно прост и стал добротной классикой. Ученый изучал падение заряженных капелек в электрическом поле конденсатора.
Опыты эти были начаты в 1906 году. Вначале бралась крохотная электрически заряженная водяная капелька.
Вниз ее тянуло поле тяжести, вверх - электрическое поле.
Неудача первых опытов состояла в том, что ничтожно малые кайли воды быстро испарялись, и уменьшение их веса вносило погрешность в расчеты. Поэтому в 1911 году ученый начал экспериментировать с каплями масла: тут испарение уже не вносило больших осложнений.
Капельки масла (проводились и опыты с ртутными шариками) у Р. Милликена были настолько легкими (они весили 10^-11 - 10^-12 грамма), что изменение их количества электричества всего лишь на один электрон (тоже лилипут: его заряд 10^-19 кулона) уже заметно влияло на скорость их падения.
Заряжение капель производилось их облучением X (икс)-лучами (так вначале называли лучи Рентгена).
При этом менялся электрический "вес" капельки: капли начинали падать быстрее пли медленнее. В определенных условиях их можно было заставить даже подниматься вверх.