Сразу удалось разрешить серьезнейшую трудность старой физики — помните, с линейчатыми спектрами? Перестает быть загадкой удивительная повторяемость свойств химических элементов, впервые подмеченная Дмитрием Ивановичем Менделеевым.
Эта повторяемость и легла в основу созданной им периодической системы химических элементов. Чем объяснить ее? — Менделеев не знал. Конечно, к тому времени уже были известны атомы. И Менделеев установил, что свойства химических элементов периодически зависят от веса их атомов.
Но почему? На этот вопрос в те годы ответа дать было нельзя. Еще не были известны электроны, еще не знали, как устроены атомы.
Теперь же, в десятые годы нашего века, «солнечноподобная» атомная картина Резерфорда и Бора без промедлений объясняет периодический закон Менделеева. Химические свойства атомов — а о периодичности именно этих свойств идет речь — определяются просто числом электронов на самой внешней, наиболее удаленной от ядра оболочке атома.
Сколько в ней может быть электронов? Наблюдения показывают, что не более восьми. От одного до восьми электронов, а значит, всего восемь типов химического поведения атомов, восемь валентностей. Когда атомы соединяются в молекулы, в игру вступают электроны на самых наружных атомных орбитах.
Вот здесь и лежит ключ к валентностям, заключает в 1914 году немецкий химик Вальтер Коссель. Это заключение и образует ту основу, на которой начинает развиваться новая, современная химия. Не та, что вслепую колдует у пробирок, а зрячая, вооруженная точным представлением и расчетом.
И это только малая доля открытий, которые вдруг хлынули из нового атома, как из рога изобилия. В этом быстром потоке нового знания ядро может считать себя обойденным. Не до него! Физики удовлетворяются пока самыми общими сведениями о нем: ядро положительно заряжено; в нем сосредоточена почти вся масса атома; оно имеет размеры, в десятки тысяч раз меньше, чем те орбиты, по которым вокруг него вращаются электроны.
Из чего оно состоит? Самое легкое ядро — это, как показывает опыт, ядро атома водорода. Вероятно, оно содержит в себе одну положительную частицу. Ядро простейшее, а потому переносит свое название и на свою частицу. Ее называют протон, что по-гречески и означает «простейший». Следующее — ядро атома гелия — вчетверо массивнее. Значит, в нем четыре протона и так далее.
А чтобы ядро могло долго и устойчиво существовать, несмотря на взаимную вражду его положительных частиц, в него нужно добавить цемента. Как и двадцатью годами раньше, когда физики пытались сдержать в атоме разлетающиеся электроны.
Пусть эти же электроны и будут цементом для протонов. Тогда ядро гелия можно составить, с его двойным положительным зарядом, из четырех протонов и двух электронов.
Вот пока и все внимание, которое уделили физики ядру. Третья выдающаяся частица атомного мира — протон — на сей раз открыта как-то «заурядно». Словно некий прочный продукт резерфордовского атома. И тут же большинство физиков забывает о нем. Забывает надолго. В следующее двадцатилетие физики заняты совсем другими вещами.
Но не забывают о ядре ни Томсон, ни Резерфорд, ни их ученики. Кажется, что они пошли теперь не в ногу с веком, в стороне от основного потока физики.
Время покажет, что это не так. «Ядерная» тишина десятых и двадцатых годов подготовляет грандиозные открытия тридцатых годов, мощно потрясшие человечество…
Глава 2
Град из космоса
Мойте руки перед едой! Врачам, долго и успешно пропагандирующим этот лозунг, обеспечена поддержка физиков.
Ибо любой физический — да и не только физический — опыт есть результат упорной борьбы человека с природой. Она нисколько не стремится к чистоте. Напротив, все, что можно, она перемешивает друг с другом. Да еще так тесно, что отделить одно от другого нередко требует колоссального труда и немалого хитроумия.
История физики — это история борьбы за чистоту опыта. Интересующему явлению всегда сопутствует компания побочных явлений. Эти явления постоянно мешают; нередко они совсем маскируют нужное явление.
Допустим, — и это ближе к нашей теме — физик изучает электрический разряд в чистом газе, к примеру, в аргоне. Значит, прежде всего надо получить чистый газ. Аргон добывается из воздуха, где его ничтожные доли процента.
Сегодня физик может не беспокоиться: к его услугам мощная химическая промышленность. Но еще полвека назад он должен был добывать аргон собственными руками.