Современники не всегда сразу оценивают по достоинству действительно крупные революционные физические теории. Так было и с теорией Ньютона о движениях тел, и с теорией Планка о квантах энергии, и с теорией относительности Эйнштейна, и со многими другими. Теория Максвелла среди них не исключение.
Еще двадцать лет спустя после ее появления знаменитый физик Людвиг Больцман, один из создателей молекулярной физики, читая лекции по теории Максвелла, начинал их словами из «Фауста» Гёте: «Я должен пот тяжелый лить, чтобы научить вас тому, чего сам не понимаю!»
И эти слова высказал один из проницательнейших физиков своего времени! Что же тогда говорить о других?
Другие физики в эти годы спокойно пробавлялись старым-престарым представлением об электрических жидкостях. Тепловой жидкости — флогистону — давно уже пришел конец. Вслед за новаторскими работами Ломоносова все тепловые явления отлично объяснила молекулярная теория. Электрический же ток в представлениях многих ученых по-прежнему оставался потоком электрической жидкости.
Так нередко бывает в науке. В течение многих лет мирно сосуществуют друг другу противоречащие представления.
Разве что электрическая жидкость была двух родов — положительного и отрицательного. Об этом говорил уже неплохо изученный к тому времени электролиз.
Что в растворе? Молекулы жидкости, жидкости на сей раз обыкновенной. А отсюда уже как будто один шаг до «молекулы электричества». Но сколь он труден, — этот шаг!
И все-таки он делается. Как ни удивительно, помехой этому шагу служит сама теория Максвелла. В этой теории обладателем электромагнитных свойств объявляется не какая-то «молекула электричества», а особая, безраздельная, абсолютно текучая и непрерывная среда — эфир.
Эфир! Тончайший, неуловимый, начисто лишенный «грубых» материальных проявлений, вроде столь «земной» — массы. Эфир, не имеющий никакой структуры, не разложимый ни на какие отдельные частицы! И думать даже грешно о какой-то структуре самой неосязаемой субстанции на свете.
А думать приходится. В той же теории Максвелла на самый передний план выступают источники электромагнитного поля — электрические заряды и их движения, именуемые токами. Что кроется за этими понятиями? Какие предметы наделены таким свойством, как электрический заряд? Движение каких предметов вызывает электрический ток?
Какие предметы? Можно допустить, что это молекулы. Что ж, пока такое допущение ни к чему не обязывает. Представлением о молекулах пронизана вся физика тех лет, и мысль об «электрической молекуле» с совершенной неизбежностью должна появиться.
Но, возражают скептики, молекулы ведь совершенно нейтральны электрически. В опытах по электричеству они обнаруживают себя лишь в том случае, если им сообщить заряд извне или отнять его. Тогда они получают название ионов и участвуют в явлении электролиза.
Сообщить заряд, отнять заряд… Это по-прежнему не решает вопроса о том, что же такое заряд. Словно посадили на молекулу какую-то неуловимую «метку» — и побежала молекула в электрическом поле, отняли — побежала в обратном направлении. Это явление говорит лишь только о движении молекулы, но никак не о метке. Нет, нет, и возражать не стоит! — заключают скептики.
И действительно, им почти никто не возражает. Электричество в самом деле кажется какой-то странной «накладкой» на обычные и привычные свойства вещества. Но может быть и другая возможность, полагает немецкий физик Вильгельм Вебер: «При всеобщем распространении электричества можно принять, что с каждым весомым атомом связан электрический атом».
Это сказано еще до завершения Максвеллом его теории. А вот и сам Максвелл скрепя сердце говорит такие знаменательные слова: «Назовем для краткости молекулярный заряд молекулой электричества; это выражение, как бы оно ни было несовершенно и как бы мало оно ни гармонировало с остальным содержанием нашей теории, все-таки поможет нам ясно высказать все, что мы знаем об электролизе».
«Электролиз требует», — Максвелл вынужден сделать признание. Но ученый все же не сдается. «Молекула электричества» — понятие несовершенное, неправильное, оно не удержится в науке. Когда мы по-настоящему познаем электролиз, от молекул электричества не останется и следа.
Ах, как он ошибается! Еще за год до смерти Максвелла голландский физик Гендрик Лоренц подводит под «эфирную» теорию более «весомый» базис. Молекула — это собрание мельчайших заряженных частичек. Заряды их одинаковы по величине, но могут быть противоположны по знаку. Так пишет Лоренц.