Глава 3
Кентавры атомного мира
«Победителей не судят!» — гласит старая поговорка. В науку она, однако, доступа не имеет. Еще как пристрастно судят! Пока не обоснован каждый шаг ученого в его сражении с природой, победа не засчитывается.
Но изредка бывает и иначе. Подозрительные ученые, косясь на ничем не обоснованную теорию, все же начинают потихоньку применять ее. Все-таки что-то лучше, чем ничего! Первый успех, второй успех!
И прежняя недоверчивость исчезает: теория «работает». Она никак не обоснована? Это ничего, «работает», значит, в общем, верна. А обоснование все равно когда-нибудь придет!
Так случилось с теорией квантов Планка. Тринадцать лет ждали кванты энергии, пока Бор так естественно не объяснил их, как неизбежное следствие электронных прыжков на атомных орбитах. Но само это объяснение, как и запрет электрону излучать, находясь на одной орбите, требовало обоснований. А обосновать их Бор не мог.
Теория Бора никак не вытекала из старой физики. Избранные орбиты электронов в атоме вместо любых, дозволяемых старой физикой. Какие-то прыжки с орбиты на орбиту вместо плавного, непрерывного перехода. Да тут и не пахнет старыми, привычными представлениями. Не пахнет? А вот вдумчивые ученые учуяли. Нам придется придержать разговор об этом до следующих страниц: неопределенное чувство половинчатости теории Бора удалось воплотить в четкие формулы лишь спустя десять лет после ее появления.
А пока что эта теория работала, и работала замечательно. Измеряя энергии атомных квантов, удалось многое узнать о состояниях электронов в атоме. Стали выясняться многие закономерности оптических, тепловых, электрических, магнитных свойств вещества. Возникла квантовая химия, основы которой вошли сегодня во все школьные учебники.
И с развитием теории Бора все чаще стали замечаться ее слабости.
Бурный поток, разливаясь по равнине, обнажает подводные камни. Как ни удивительно, одним из таких подводных камней для теории Бора оказались те самые спектры, происхождение которых она столь блестяще объяснила.
Физика — наука точная. Она не удовлетворяется одним объяснением — ей подавай точный расчет. Вот, например, спектр излучения атома. Его линии характеризуются двумя величинами — частотой, или длиной волны, и интенсивностью, или яркостью.
Длины волн спектральных линий теория Бора рассчитывать позволяет. Это ее успех. А вот как быть с расчетом интенсивностей? На этот счет теория не дает никаких указаний. Более того, из нее вообще не вытекает, что спектральные линии могут иметь разные яркости.
В самом деле, если электрон набрал достаточную энергию, то он может совершать между орбитами как длинные прыжки назад, в которых расходуется вся эта энергия, так и короткие, в которых освобождается только ее часть. Ничто не запрещает электрону совершать длинные прыжки столь же часто, как и короткие.
Электрон, заброшенный на далекую от ядра орбиту, может вернуться на исходную орбиту не обязательно за один прием. Тогда вместо одного кванта высокой частоты (или энергии) возникнет несколько квантов с меньшими частотами. И ниоткуда не следует, что электрон должен предпочитать возвращение домой на экспрессе путешествию с пересадками на промежуточных станциях, и наоборот.
А вот на зависть теории Бора ее поверженная предшественница — старая физика — рассчитывать интенсивности спектров умеет. Правда, ей доступны только непрерывные спектры. Вспомним, что она, в свою очередь, даже и помыслить не может об объяснении рождения отдельных линий.
Итак, одна теория умеет одно, другая — другое. Бору приходит в голову мысль сопрячь обе теории вместе.
Как это сделать? И тут Бор замечает, что расположение электронных орбит в атоме следует очень удобному для этой цели порядку. По мере удаления от ядра те орбиты, на которых его теория позволяет находиться электронам, все более сближаются друг с другом.
Лесенка энергий, которыми могут в атоме обладать электроны, имеет ступеньки неодинаковой высоты. По мере подъема по лесенке ее ступеньки укорачиваются. Она выглядит так, как прислоненная к стене дома обыкновенная лестница, если смотреть на нее снизу. Далекие ступеньки для глаза совершенно сливаются. Но здесь это иллюзия зрения, а в атоме такое происходит наяву.