Итак, вероятностный закон вместо точного закона классической физики. Не назад ли пошла физика, вместо того, чтобы двигаться вперед?
Нет, недоуменный вопрос не имеет под собой почвы. Если уж говорить об этом, то те «точные» предсказания, которыми старая физика пыталась описывать движение электронов и других микрочастиц, были не более чем миражем.
Классическая физика самонадеянно считала, что она может описать любое явление, любое движение любой частицы в любых условиях. Задай только положение и скорость частицы в некий момент времени и действующие на нее силы, и можно будет сказать все о движении частицы в последующие моменты времени, хоть через миллион лет.
И ученые верили этому без малейшего сомнения. Но с горы видно дальше, чем с холма. «Невежество» классической физики незамедлительно выявилось, как только ученые поднялись на горы теории относительности и теории квантов. Спору нет, «старушка» отлично работает в привычном нам мире больших вещей, движущихся с небольшими скоростями. Но пусть она лучше не суется в мир атомов, мир сверхмалых частиц. Там ее «точные» предсказания — часто попадания пальцем в небо.
«Волны вероятности», вероятностные законы движения сверхмалых частиц — законы куда более точные, чем классические законы в этих масштабах мира. Нет, это не отступление физики, а гигантский скачок вперед!
Но все-таки, что ни говори, а хотелось бы иметь в руках точный закон движения каждой частицы, каждого электрона. Увы, это в нас еще говорит явно устаревшее желание все увидеть, все пощупать. Даже если чего-либо нельзя, и принципиально нельзя ни увидеть, ни пощупать.
Мы живем в «классическом» мире. Все наши образы, представления, все наши мысли в конечном счете черпаются из него.
В том-то и состоит великий подвиг физиков современности, что они первыми создали совершенно необычные представления. Что они организовали у себя в головах новый мир — отражение того мира, что скрыт в глубинах вещей, и сумели путешествовать и открывать новые земли в этом мире.
Последуем за ними в этом необычайном путешествии.
Уже позади время первых робких попыток проникнуть в новый, атомный мир. Теперь, к середине двадцатых годов нашего века, существует квантовая механика. Попытки отдельных смельчаков мысли сменяются большими, хорошо оснащенными экспедициями целых научных коллективов.
Появляются тончайшие, фантастически чувствительные физические приборы. О таких приборах и мечтать не могли ученые каких-нибудь полвека назад. В распоряжение физиков поступают счетчики частиц, камеры, снабженные стереофотоаппаратами, толстые слои фотоэмульсий, богатая радиотехническая аппаратура.
Но, вступая в незнакомый мир, прежде всего надо посмотреть, как в нем будут вести себя измерительные приборы, не будут ли они давать неточных показаний, а то и попросту врать.
Наука того времени знает уже немало сенсационных «открытий», родившихся из ошибочных показаний приборов, или, что еще хуже, из неверного истолкования результатов измерений.
Оправданы ли подобные опасения теперешних путешественников? Для этого, видимо, есть основания. Любой, даже самый крошечный прибор должен вести себя в мире атомов, как слон в муравейнике. Слишком несоизмеримы масштабы двух миров: того, в котором проводят измерения, и того, который хотят измерить.
Но одних догадок мало. Нужен еще убедительный ход мысли, заканчивающийся точным расчетом. Этот расчет выполняет в 1927 году один из зачинателей квантовой механики немецкий физик Вернер Гейзенберг.
Послушаем, что он говорит. И представим это в виде беседы ученого с измерительным прибором. Пусть нас не смущает то, что такую сценку не поставят на подмостках театра: уж очень она похожа на знаменитый чеховский «Разговор человека с собакой». На самом же деле — это мысленный диалог ученого.
Ученый (прибору). Вот тебе задание. Пристройся к опыту по дифракции электронов на кристалле. Там электрон почему-то отказывается подчиняться старым классическим законам. Выбери себе электрон, измерь траекторию его полета и определи, так ли это.
Прибор (возвращаясь). Я сходил посоветоваться к старичку микроскопу. Ведь перед ним ставятся подобные задачи. Правда, не на электронах, а на бактериях, пылинках: они гораздо крупнее. Но все равно, сказал он мне, законы наблюдения общие. Чтобы увидеть какой-либо предмет, его надо осветить. В кромешной тьме ничего не увидишь. Да еще надо знать, чем освещать.