Но если водолаза поднимать на поверхность медленно с остановками, то также медленно, постепенно будет выделяться из его организма избыточный азот. В этом случае он не причинит человеку никакого вреда. Такой медленный подъем и связанное с ним постепенное понижение давления называется декомпрессией. Иногда время декомпрессии затягивается на несколько часов. Легко представить себе самочувствие водолаза, неподвижно висящего в толще воды.
С изобретением подводного лифта положение изменилось. Лифт имеет снизу люк и подвешивается к лебедке или крану, находящемуся на борту водолазного судна. Водолаз, закончив работу, входит в лифт и пока он медленно поднимается, человек проходит декомпрессию находясь в сухом помещении. Но вредное действие азота не ограничивается только кессонной болезнью. Уже начиная с глубины 30—50 м он действует как наркотик, и водолаз подвергается глубинному «опьянению».
Глубинное «опьянение» стало серьезным препятствием в освоении глубин. Чтобы избежать его, были предложены искусственные дыхательные смеси, лучшей из которых оказалась та, где азот был заменен инертным газом — гелием. Первые же погружения с применением гелиокислородных дыхательных смесей дали возможность достичь значительно больших глубин. Еще в 1939 г. советские водолазы Леонид Кобзарь и Павел Выгулярный спустились на невиданную тогда глубину 157 м. В начале 1948 г. опять-таки советские водолазы И. Выскребенцев и Б. Иванов первыми в мире достигли 200-метровой глубины, а в 1956 г. тоже советские водолазы Д. Лимбенс, В. Шалаев и В. Курочкин первыми покорили и 300-метровую глубину. Лишь 6 лет спустя профессор математики из Цюриха Ганс Келлер достиг глубины 305 м. При этом погружении погиб его товарищ английский журналист Питер Смолл. Однако это были одиночные погружения которые в первую очередь преследовали цель — выяснить возможности человеческого организма и отработать некоторые конструктивные особенности водолазного снаряжения. Вести какие-либо работы на таких глубинах и особенно в более удобных мягких костюмах практически невозможно. В связи с этим усилия ученых были направлены на то, чтобы, во-первых, создать такое безопасное снаряжение, которое бы позволило увеличить глубину погружения без вреда для здоровья человека; и, во-вторых, найти средство, которое давало бы человеку возможность свободно передвигаться на глубине, независимо от подачи воздуха с поверхности. Избавление от шлангов подачи воздуха, безусловно, позволило бы человеку передвигаться под водой с большей безопасностью для жизни. Такой аппарат был изобретен в 1943 г. знаменитым французским исследователем глубин Жаком Ив Кусто и французским инженером Эмилем Ганьяном. Акваланг, или, как его чаще называют, «подводные легкие», позволил, наконец, избавиться от шланга, десятилетиями сковывающего водолаза в скафандре, и дал возможность человеку передвигаться под водой подобно рыбе. Трудно переоценить это изобретение, открывшее новые небывалые возможности исследования морских глубин. Акваланг состоит из маски, двух баллонов со сжатым воздухом (они соединены воздушными шлангами с загубником, через который подается воздух в легкие водолаза именно под тем давлением, какое имеет окружающая среда) и резиновых ласт. Легкий резиновый гидрокостюм и резиновые сапоги дополняют снаряжение аквалангиста.
Два баллона со сжатым воздухом позволяют находиться на глубине 10 м 50 мин, на глубине 30 м 25 мин, на глубине 70 м — 12 мин. С изобретением акваланга практически каждый человек после двух-трех уроков может погрузиться на глубину до 15 м, а после несколько более тщательной подготовки и на глубину до 40 м. Подводный мир во всем своем многообразии верхнего слоя может наблюдать любой любознательный человек.
Параллельно с работами по созданию акваланга, после того как выяснились ограниченные возможности тяжелых водолазных скафандров, для проникновения в морские глубины начали использовать наблюдательные камеры. Они представляли собой вертикальные стальные цилиндры, снабженные множеством иллюминаторов, запасом дыхательной смеси и телефонной связью с поверхностью. Такие наблюдательные камеры опускались на тросе с надводного судна, и использование их стало возможным только с появлением автономного устройства для регенерации (возобновления) воздуха и источников света, позволяющих вести наблюдения на больших глубинах. Наблюдательные камеры явились ступенью для создания первой батисферы американских ученых Уильяма Биби и Отиса Бартона. Она представляла собой полый стальной шар диаметром около 2 м и массой 2,5 т. В иллюминаторы были вставлены кварцевые стекла толщиной 7,5 см. Батисфера имела запас кислорода на двух человек ига 8 ч и регенерационный аппарат для восстановления «отработанного» воздуха.