Выбрать главу

Рис. 18. Проект плавучего города над глубоководным заливом.

В настоящее время рассматриваются три варианта использования получаемой в океане электроэнергии.

Во-первых, использование ее для снабжения ближай ших прибрежных городов. Для этого достаточно соединить электростанцию с берегом подводным силовым кабелем.

Во-вторых, электричество можно производить непосредственно на месте, как указывает французский специалист Франсуаз Арруа-Монин, для промышленности, требующей большого количества энергии, например производства алюминия из бокситов, извлечения магния, обессоливания морской воды, добычи из моря марганца, производства аммиака для получения удобрений.

В-третьих, можно на месте производить водород и транспортировать его на берег с последующим сжиганием его в топливных элементах для получения электричества. Ассоциация европейских стран Евросеан предлагает объединить вместе с производством электроэнергии обессоливание морской воды и создание рыбных ферм Последнее предложение обосновывается тем фактом, что вместе с подъемом глубинной холодной воды, значительно более богатой минеральными солями, к поверхности поднимаются и содержащиеся в них элементы. Эти нитраты, фосфаты и силикаты способствуют развитию фитопланктона и зоопланктона — основной кормовой базы для рыб.

Американские ученые предлагают использовать в качестве источников холодной воды айсберги. В этом случае можно использовать холод для работы электростанции и получить пресную воду для нужд тех стран, где ощущается ее нехватка. Некоторые исследователи предлагают установить электростанцию непосредственно на айсберге, а полученную энергию использовать для передвижения этой огромной массы льда в тот район земного шара, где ощущается недостаток пресной воды.

Выше уже указывалось, что одним из самых перспективных направлений использования потенциальной энергии морей и океанов является производство водорода из морской воды. Топливно-энергетический потенциал водорода известен давно, но только в последние годы в связи с энергетическим кризисом на него стали рассчитывать как на основной заменитель нефти и газа в ближайшем будущем.

Проектируются установки по производству водорода из морской воды, работающие на использовании солнечной энергии. Сотрудники Иокогамского университета создали блок термоэлементов площадью 9—10 м2, который обеспечивает добычу 10 тыс. м2 водорода в год. Прямые солнечные лучи концентрируются при помощи линз на концах термоэлементов, а противоположные концы охлаждаются морской водой. Вследствие разницы температур возникает электрический ток, разлагающий воду на водород и кислород.

Другим весьма перспективным методом получения водорода из морской воды является метод фотолиза, открытый совсем недавно. При использовании фотолиза свет разлагает воду на кислород и водород при помощи клеточных мембран растений, содержащих хлорофилл, и ферментов, добавляемых в качестве катализаторов. Сделан первый шаг на пути создания «биологической» системы, способной преобразовывать солнечную энергию в топливо — водород. В настоящее время работают первые опытные системы такого типа, вырабатывающие водород по десять и более часов подряд. Ценность фотолиза заключается в том, что в противовес электролизу на него не надо тратить электричество. Исходные материалы для этого процесса (свет и вода) имеются практически всегда и в неограниченных количествах. Процесс происходит при нормальных окружающих температурах и не сопровождается образованием промежуточных токсичных соединений. Для функционирования фотолитических систем достаточен свет любой интенсивности, который влияет лишь на темпы производства водорода. Основные затруднения в реализации этого метода в промышленных масштабах заключаются в поисках стойкого фермента-катализатора этого процесса, практически невидоизменяемого под действием кислорода. Сейчас обнаружен подобный фермент гидрогенеза и ведутся дальнейшие исследования по реализации этого метода. Конечной целью ведущихся исследований является осуществление процесса искусственного фотосинтеза. Необходимо «лишь» создание стойких и эффективных фотосинтезаторов. Японские ученые пытаются разработать процесс искусственного фотосинтеза, который мог бы «питаться» отходами, например отстоем сточных вод, вернее, бактериями, которые выделяются в их среде. Эти опыты являются весьма многообещающими.