Выбрать главу

Основания, заложенные в построение этой карты, гениально просты. Невозможно, конечно, восстановить ход рассуждений Г. Меркатора, но предположим, что рассуждал он так: допустим, что все меридианы на глобусе (который довольно точно передает взаимное расположение океанов, морей и суши на Земле) сделаны из проволоки, а параллели из упругих нитей, которые легко растягиваются (резины в то время еще не знали). Разогнем меридианы так, чтобы они из дуг превратились в параллельные прямые, прикрепленные к экватору. Поверхность глобуса превратится в цилиндр из прямых меридианов, пересеченных растянувшимися параллелями. Разрежем этот цилиндр по одному из меридианов и расстелем на плоскости. Получится географическая сетка, но меридианы на этой сетке не будут сходиться, как на глобусе, в точках полюсов. Прямыми параллельными линиями они будут идти вверх и вниз от экватора, а параллели — пересекать их везде под одним и тем же прямым углом.

Удобная получилась сетка! А вот карта, построенная на такой сетке, никуда не годится! Круглый островок у экватора как был на глобусе круглым, так и на этой карте останется почти круглым, в средних широтах такой же островок значительно растянется по широте, а в районе полюса он будет вообще выглядеть как длинная прямая полоса. Взаимное расположение суши, моря, конфигурация материков, морей, океанов на такой карте изменится до неузнаваемости. Ведь меридианы остались такими, какими и были, а параллели растянулись. Плавать, руководствуясь такой картой, конечно, было невозможно.

Но это дело оказалось поправимым: надо было только увеличить расстояние между параллелями. Но, конечно, не просто увеличить, а в точном соответствии с тем, насколько растянулись параллели при переходе на меркаторскую карту. Получилась новая сетка. На карте, построенной с помощью этой сетки, круглый островок и у экватора и в любом другом участке карты оставался круглым. Вот только чем ближе к полюсу, тем больше места занимал он на карте. Масштаб на такой карте от экватора к полюсам увеличивался. Зато очертания объектов, нанесенных на карту, получались почти без изменений.

А как же быть с масштабом? Конечно, можно для каждой широты высчитать масштаб отдельно. Только очень хлопотным делом будет такое плавание, в котором после каждого передвижения к северу или югу придется делать довольно сложные расчеты. Но оказывается, что на меркаторской карте таких расчетов делать не приходится. Карта заключена в рамку, на вертикальных сторонах которой нанесены градусы и минуты меридиана. У экватора они покороче, а чем ближе к полюсу, тем длиннее. Пользуются рамкой так: расстояние, которое нужно измерить, снимают циркулем, подносят к той части рамки, которая находится на широте измеряемого отрезка, и смотрят, сколько минут в нем уложилось. А так как минута и градус только на такой карте изменяются по величине в зависимости от широты, а на самом-то деле остаются всегда одинаковыми, именно они и стали основанием для выбора линейных мер, которыми моряки измеряли свой путь.

Во Франции была своя мера — льё, равная 1/20 градуса меридиана, что составляет 5537 метров. Англичане измеряли свои морские дороги лигами, которые тоже представляют собой дробную часть градуса и по величине составляют 4828 метров. Но постепенно моряки всего мира сошлись на том, что удобнее всего пользоваться для измерения расстояний на море величиной, соответствующей длине минуты меридиана. Так до сих пор и измеряют моряки свои пути и расстояния именно минутами дуги меридиана. А чтобы придать этой мере название, похожее на названия других путевых мер, окрестили минуту меридиана милей. Длиной ее считают 1852,3 метра.

Пользоваться милей очень удобно. Поэтому моряки и не собираются пока заменять милю какой-нибудь другой мерой.

Проложив свой путь на меркаторской карте по линейке, измерив расстояние и запомнив, какого курса при этом придерживаться, моряк смело пускается в плавание, редко задумываясь о том, что его путь, прямой, как стрела, по карте и по компасу вовсе не прямая линия, а как раз та самая кривая, о которой мы говорили раньше, — локсодромия!

Это, конечно, не кратчайший путь между двумя точками. Но если эти точки лежат не очень далеко друг от друга, то моряки не огорчаются и мирятся с тем, что сожгут лишнее горючее и истратят лишнее время на переход. Зато на этой карте локсодромия выглядит прямой, которую ничего не стоит построить, и можно быть уверенным, что приведет она как раз туда, куда нужно. А если предстоит большое плавание, такое, например, как переход через океан, при котором дополнительные затраты на кривизну пути выльются в значительную сумму и время? В этом случае моряки научились строить на меркаторской карте другую кривую — ортодромию, что значит по-гречески «прямой путь». Ортодромия на карте совпадает с так называемой дугой большого круга, которая и является на море кратчайшим расстоянием между двумя точками.