Мы действительно скоро перейдём к фантастике. Пока же, коль скоро о ней зашла речь, отметим любопытное обстоятельство.
Стремительный рост научного оборудования почти не замечен фантастами. Как известно, герой романа Уэллса «Человек-невидимка» сделал своё открытие в домашней лаборатории. «Я пользовался двумя небольшими динамо-машинами, — рассказывает невидимка, — которые я приводил в движение при помощи дешёвого газового двигателя». Шестьдесят с лишним лет спустя герой повести А. Днепрова «Суэма» точно в таких же условиях создал электронное разумное существо: «Я начал работу над своей Суэмой дома… Я стал приобретать материалы для будущей машины… по моему проекту была изготовлена многолучевая электронная трубка в форме шара диаметром в один метр…»
Фантастика здесь похожа на историческое повествование. Создатель сложнейшей кибернетической машины работал так, как, например, работал в конце прошлого века Рентген. «Для всего исследования, — писал об открытии рентгеновских лучей А. Иоффе, — почти не потребовалось сколько-нибудь сложных приборов: электроскопы, кусочки металлов, стеклянные трубки…»
Трудно поверить, что через пятьдесят, сто или двести лет учёные будут работать так, как они работали во времена Рентгена.
Вместе с увеличением размеров научной аппаратуры растёт и исследовательское поле — минимальная «жилплощадь», необходимая для размещения всего комплекса оборудования. Ещё в конце прошлого века исследовательским полем был стол учёного. Через двадцать — тридцать лет физику требовалась уже лаборатория, состоящая из нескольких комнат и мастерских. Ныне исследовательское поле выросло до размеров настоящего поля (в первоначальном значении этого слова).
Здание, в котором размещён синхрофазонтрон на 10 млрд. электронвольт, имеет объём в 335000 куб. метров. Эрстед получал ток от химического элемента, уместившегося в бокале. Синхрофазонтрон питает электростанция, способная обеспечить энергией целый город!
Исследовательское поле (в физике) растёт — если сравнивать с ростом оборудования — непропорционально быстро. Тут проявляется тенденция к использованию всё более и более высоких потенциалов. Исследователю уже небезопасно оставаться рядом с прибором. Электронный микроскоп, например, создаёт сильнейшее рентгеновское излучение: поэтому управляют прибором на расстоянии, а изображение рассматривают на телеэкране.
Быстро увеличивается и производительность научной аппаратуры (количество опытов, наблюдений, замеров в единицу времени). В своё время Гершель направлял телескоп, пользуясь громоздкими лестницами, системой скрипящих катков и блоков. Рассказывают, что сестра Гершеля однажды упала с этих лестниц и сломала ногу. Современными телескопами-гигантами астрономы управляют, нажимая на кнопки.
Увеличение производительности научного оборудования, естественно, вызывает сокращение времени, затрачиваемого на один эсперимент.
Обычно эксперимент представляет собой цепь последовательных операций. Каждая такая операция раньше проводилась вручную или шла «сама по себе». Требовалось, например, несколько недель, чтобы отстоялись мелкие частицы, взвешенные в жидкости. С помощью современной ультрацентрифуги это осуществляется в течение минуты.
И ещё одна — исключительно важная — тенденция. Во времена Галилея нужны были десятки лет, чтобы новое открытие стало известным широкому кругу учёных и в свою очередь было использовано для следующего шага вперёд.
К началу XX века период освоения новых открытий уменьшился примерно до года. В наше время этот период измеряется днями, а в наиболее важных случаях даже часами. Развитие телевидения и радио, укрепление контактов между творческими коллективами позволяют в принципе уже в самое ближайшее время сократить период освоения до нескольких минут.
Остаётся сделать полшага: вообще говоря, фантастическая идея уже наметилась.
Допустим, прошло полтораста-двести лет. Исследовательское поле выросло настолько, что занимает всю поверхность планеты. Не Земли — она населена. И не Марса — оставим Марс для фантастических приключений. Выберем Ганимед, спутник Юпитера, по размерам лишь немногим уступающий Марсу.
На поверхности Ганимеда расположены комплексы исследовательских установок. Размеры установок измеряются километрами и десятками километров, а каждый комплекс (он включает «набор» установок, вычислительные центры, вспомогательное оборудование и электронные управляющие устройства) занимает площадь, равную, скажем, Московской области.