Ca2+ + F- → TR3+ + O2-,
2Ca2+ → TR3+ + Na+ и т. п.
Вхождение изоморфных примесей во флюорит изменяет многие его структурно-чувствительные физические свойства.
Большое влияние на свойства флюорита оказывают структурные дефекты. Структура кристаллов флюорита, как и вообще любых других кристаллов, всегда содержит множество локальных нарушений (точечных, линейных, плоскостных, объемных), возникающих в процессе кристаллизации в результате «ошибок» при встраивании в кристалл кристаллообразующих частиц, вхождении чужеродных примесных элементов, захвате включений и т. п.
Для кристаллов флюорита характерны все типы точечных дефектов. К простейшим точечным дефектам относятся вакансии, образующиеся в результате того, что в узлах решетки отсутствуют ионы кальция (такие дефекты называются дефектами Шоттки). Другой тип точечных дефектов (дефекты Френкеля) образуется, когда атом (ион) из узла решетки перемещается в междоузлие. Вызываемые ими нарушения в решетке строго локализованы — размеры их сравнимы с межатомными расстояниями. К точечным дефектам также относятся комплексы из небольшого числа простейших дефектов, если размеры нарушений не превышают нескольких межатомных расстояний. Такие комплексы иногда называют кластерами.
Точечные дефекты, располагаясь в целом хаотически, способны к упорядоченному расположению вдоль определенных кристаллографических направлений. Вследствие этого возникает анизотропия, особенно выраженная, если дефекты создаются примесями, например оптическая анизотропия в кубических кристаллах, в том числе в кристаллах флюорита.
Миграция дефектов по кристаллу, усиливающаяся с повышением температуры, приводит к их дальнейшему объединению и образованию более крупных, макроскопических, областей нарушений, влияющих на первичные свойства кристалла. Структурные дефекты могут быть причиной явлений, не характерных для идеального кристалла флюорита, — окраски, интенсивной люминесценции и др. В то же время, зная природу этих свойств, можно целенаправленно изменять их, вводя в структуру дефекты нужного «сорта». На этом основано, например, использование кристаллов фтористого кальция, легированных Sm2+, Dy2+, Nd3+, Er3+ в лазерной технике, а также в мазерах.
Основными линейными дефектами являются дислокации, образующиеся в результате сдвига атомных слоев друг относительно друга на одно межатомное расстояние. Дислокации могут быть краевыми, представляющими собой край «оборванной» в результате сдвига атомной плоскости, и винтовыми (фото 1, см. вкл.), в которых линия, последовательно соединяющая атомы один за другим, является винтовой. Вблизи дислокации кристалл сильно деформирован, причем если ширина деформированной зоны соответствует размерам точечного дефекта, то длина ее может достигать миллионов межатомных расстояний — дислокация как бы пронизывает кристалл насквозь. Плотность дислокаций, определяемая как число дислокационных линий, пересекающих площадку в 1 см2 в кристалле, может достигать в сильно деформированных кристаллах 1012. В хороших оптических кристаллах фтористого кальция она составляет 104 и менее на 1 см2. Плотностью дислокаций, их распределением и перемещением внутри кристалла определяются механические свойства флюорита.