Таким образом, уже на этой начальной ступени положительных наук, прежде чем геометрия успела перейти за несколько эмпирических правил, прежде чем механика пошла далее своей первой теоремы, прежде чем астрономия из чисто хронологического фазиса перешла в геометрический, - наиболее запутанная из наук (социология) достигла известной степени развития, развития, без которого невозможен был прогресс в других науках.
Заметим мимоходом, как уже в этот ранний период прогресс точной науки шел не только к увеличению числа предвидений, но и к предвидениям более точно-количественным; как в астрономии период возвращающихся лунных движений мало-помалу сведен был к более верному количеству времени - двумстам тридцати пяти лунным периодам, как далее Каллип исправил этот метонический цикл, опустив один день в конце каждого семьдесят шестого года, как, наконец, эти последовательные успехи предполагают более продолжительное записывание наблюдений и соглашение более значительного числа факсов. Указав на это, перейдем к исследованию вопроса о том, как получила свое начало геометрическая астрономия. Первым астрономическим инструментом был гномон Он не только рано был употребляем на Востоке, но найден был и у мексиканцев; посредством его были сделаны астрономические наблюдения перуанцев. История говорит, что за 1100 лет до Р. X. китайцы нашли, что на известном месте длина солнечной тени, в летнее солнцестояние, находится в таком же отношении к высоте гномона, как полтора к восьми. Здесь опять мы видим не только то, что инструмент находится готовым, но и то, что природа сама постоянно совершает процесс измерения; всякий укрепленный стоячий предмет - столб, сухая пальма, жердь, угол здания - служит гномоном; и нужно только замечать изменяющееся положение тени, им бросаемой, чтобы сделать первый шаг в геометрической астрономии. Как незначителен был этот первый шаг, можно видеть из того, что вначале узнаны были только периоды зимнего и летнего солнцестояний, соответствовавшие самой меньшей и самой большей длине полуденной тени, для определения которых стоило только ежедневно отмечать точку, какой достигла тень. Нельзя не заметить, что в наблюдении в какое время в течение следующего года тень снова дойдет до крайнего предела, и в выводе, что Солнце достигло тогда той же самой поворотной точки в своем годовом пути, мы имеем один из самых простых примеров того совокупного употребления равных величин нравных отношений, посредством которого достигается всякая точная наука, всякое количественное предвидение. Когда замечено было отношение между длиной солнечной тени и положением Солнца на небе, явился вывод, что если в следующий год оконечность солнечной тени достигла той же самой точки, то и Солнце заняло то же самое место, т. е. идеи, заключавшиеся здесь, были: равенство теней и равенство отношений между тенью и Солнцем в течение нескольких годов подряд. И здесь, как в деле весов, установившееся равенство отношений было самого простого порядка. Это не то равенство, с которым обыкновенно имеют дело в высших родах научного рассуждения и которое соответствует общему типу: отношение между двумя и тремя равняется отношению между шестью и девятью. Нет, это равенство следует типу, отношение между двумя и тремя равняется отношению между двумя и тремя, тут дело идет не просто о равных отношениях, но об отношениях совпадающих. И здесь, без сомнения, мы видим прекрасное пояснение того, как идея равных отношений возникает тем же самым путем, как и идея равных величин. Как показано уже, идея равных величин возникает из наблюдаемого совпадения двух долгот, сопоставленных рядом; а в данном случае мы имеем не только две совпадающие длины теней, но и два совпадающих отношения между Солнцем и тенями.
Из употребления гномона естественно выросло понятие об угловых измерениях, и с успехом геометрических концепций явились гемисфера Бероса, равноденственное кольцо, солнцестоятельное кольцо и квадрант Птолемея; во всех этих приборах тень служила указателем положения Солнца, но в соединении с угловыми делениями. Следить за этими подробностями прогресса, очевидно, лежит вне нашей задачи. Достаточно будет заметить, что во всех них мы можем видеть то понятие равенства отношений более сложного рода, которое лучше всего выяснилось в астролябии, инструменте, состоявшем "из кругообразных ободов, движущихся один внутри другого или около полюсов, и содержащем круги, которые должны приводиться в положение эклиптики и плоскости, проходящей через Солнце и полюсы эклиптики", - в инструменте, следовательно, представлявшем как бы в модели относительные положения известных воображаемых линий и плоскостей на небе; он действовал посредством приведения этих представляющих линий и плоскостей в параллелизм и совпадение с небесными, и в своем употреблении основывался на идее, что отношения между этими представлявшими линиями и плоскостями равны отношениям между представляемыми линиями и плоскостями. Мы могли бы указать далее, что понятие о небе, как вращающейся полой сфере, изъяснение фаз Луны и все последующие шаги предполагают в себе тот же самый умственный процесс. Но мы должны удовольствоваться указанием на теорию эксцентриков и эпициклов, как на более отчетливое выяснение этого. Предложенная и доказанная в первый раз Гиппархом, с целью доставить объяснение главных неправильностей в небесных движениях, эта теория заключает понятие, что прогрессии, ретрегрессии и вариации скорости, видимые в небесных телах, могут быть примирены с их предполагаемым однообразным движением в кругах посредством предположения, что Земля находится не в центре их орбит, или посредством предположения, что они обращаются в кругах, которых центры обращаются вокруг Земли, или посредством того и другого предположения, вместе взятых. Открытие того, что так должны быть объясняемы явления, было не что иное, как открытие, что в некоторых геометрических фигурах отношения были таковы, что однообразное движение точки, если на него смотреть с известного положения, будет представлять аналогичные неправильности; и вычисления Гиппарха, таким образом, предполагают верование, что отношения, существующие между этими геометрическими кривыми, равны отношениям, существующим между небесными орбитами.
Оставляя здесь эти подробности астрономического прогресса и философию его, заметим, как относительно конкретная наука геометрическая астрономия, поддерживаемая до тех пор развитием геометрии вообще, в свою очередь воздействовала на нее и была также причиной ее успеха - и затем снова пользовалась ее помощью. Гиппарх, до составления своих солнечных и лунных таблиц, открыл правила для вычисления отношений между сторонами и углами треугольников, - открыл тригонометрию, подкласс чистой математики. Далее, приведение теории о шаре в количественной форме, нужное для астрономических предположений, требовало образования сферической тригонометрии, которое было также совершено Гиппархом. Таким образом, и прямолинейная и сферическая тригонометрия, части весьма абстрактной и простой науки о протяжении, оставались неразвившимися до тех пор, пока менее отвлеченная и более сложная наука небесных движений не стала нуждаться в них. Факт, принимаемый Контом, что со времен Декарта прогресс абстрактного отдела математики определялся прогрессом конкретного отдела, этот факт стоит в параллели с еще более знаменательным фактом, что даже и ранее того прогресс математики определялся прогрессом астрономии. Здесь нам представляется пример той истины, которая часто выясняется в истории наук, - истины, что, прежде чем абстрактный отдел подвинется вперед, конкретный отдел должен породить необходимость этого движения, должен представить новый ряд вопросов, требующих разрешения. Прежде чем астрономия представила Гиппарху задачу солнечных таблиц, не было ничего, что возбудило бы вопрос об отношениях между линиями и углами, и предмет тригонометрии был немыслим.
Заметим также мимоходом, что эпоха, описываемая нами, была свидетелем развития алгебры, сравнительно абстрактного отдела математики, посредством соединения менее абстрактных отделов ее, геометрии и арифметики, - факт, доказанный самыми древними из дошедших до нас проявлений алгебры, наполовину алгебраических, наполовину геометрических. Заметив это, перейдем к указанию, как в продолжение той же эпохи, в которую астрономия и математика сделали так много успехов, рациональная механика сделала свой второй шаг и как вместе с тем сделан был первый шаг для сообщения количественной формы гидростатике, оптике, гармонике. Во всех этих случаях мы опять увидим, как идея равенства лежит в основании всякого количественного предвидения и в каких простых формах эта идея применялась вначале.
Мы показали уже, что первая установленная теорема в механике была та, что равные разновесы, повешенные на рычаг с равными плечами, останутся в равновесии. Архимед открыл, что рычаг с неравными плечами оставался в равновесии, когда одна тяжесть относилась к своему плечу так, как другое плечо - к своей тяжести, т. е. когда численное отношение между одной тяжестью и ее плечом было равно численному отношению между другим плечом и его тяжестью.