Но может быть, абстрактная и конкретная математика и получили свое начало в одно и то же время, но впоследствии одна развивалась быстрее другой и с тех пор оставалась всегда впереди нее? Нет, - и мы призываем в свидетели опять самого Конта. К счастью для своей аргументации, он ничего не сказал относительно первых ступеней абстрактного и конкретного отделов после расхождения их от общего корня, иначе появление алгебры, долго спустя после того, как греческая геометрия достигла высокой степени развития, было бы фактом, с которым ему оказалось бы неудобным иметь дело. Но, оставляя это в стороне и ограничиваясь его собственными положениями, мы находим в начале следующей главы допущение, что "историческое развитие абстрактной части математической науки, со времени Декарта, по большей части определялось развитием конкретной части". Далее относительно алгебраических функций говорится, что "многие функции были конкретны при своем происхождении - даже те из них, которые в настоящее время совершенно абстрактны, и что древние открывали только путем геометрических определений элементарные алгебраические свойства функций, которым численное значение стало придаваться гораздо позже, делая для нас абстрактным то, что было конкретным для древних геометров". Как же примирить эти положения с доктриной Конта? Мало того, разделив счисление на алгебраическое и арифметическое, Конт допускает - как он необходимо и должен допустить, - что алгебраическое счисление более обще, чем арифметическое, однако же он не скажет, что алгебра предшествовала арифметике по времени. Далее, разделив исчисление функций на исчисление прямых функций (общая алгебра) и на исчисление непрямых функций (трансцендентный анализ), он поставлен в необходимость сказать, что последний обладает высшей общностью, чем первый, однако же происхождение его относится к гораздо более позднему времени. Правда, косвенным образом Конт сам признает это несоответствие, потому что он говорит: "Может казаться, что трансцендентный анализ должен был быть изучаем прежде обыкновенного, так как он приготовляет уравнения, разрешаемые последним, но хотя трансцендентный анализ логически независим от обыкновенного, лучше следовать принятому методу изучения, т. е. начинать с обыкновенного". Во всех этих случаях, как и в заключении отдела, где он предсказывает, что со временем математики "создадут процессы более широкой общности", Конт делает допущения, диаметрально противоположные принятому им закону.
В следующих главах, в которых рассматривается конкретный отдел математики, мы находим подобные же противоречия Конт сам называет геометрию древних специальной геометрией, а геометрию новейшего времени общей геометрией. Он допускает, что, тогда как "древние изучали геометрию по отношению к известным телам или специально, в новейшее время ее изучают по отношению к рассматриваемым явлениям, или вообще". Он допускает, что, тогда как "древние извлекали все, что могли, из одной линии или поверхности, прежде нежели переходили к другой", "новейшие математики, со времен Декарта, занимаются вопросами, которые относятся к какой бы то ни было фигуре". Эти факты совершенно противны тому, что должно бы быть согласно его теории. Точно то же оказывается и по отношению к механике. Прежде разделения ее на статику и динамику Конт разбирает три закона движения, и должен поступить так, потому что статика, наиболее общий из этих двух отделов, хотя и не обнимает собою движения, невозможна как наука, пока не установлены законы движения. Между тем законы движения относятся к динамике, более частному отделу. Далее Конт замечает, что после Архимеда, открывшего закон равновесия рычага, статика не делала успехов до тех пор, пока установление динамики не дало нам возможности искать "условий равновесия с помощью законов сложения сил", - и присовокупляет: "Теперь этот метод вошел во всеобщее употребление. На первый взгляд это кажется не особенно рационально, потому что динамика сложнее статики, а предшествовать должно бы то, что проще. Но на деле будет более научно отнести динамику к статике, как делали с тех пор". Различные открытия, рассмотренные затем в частности, показывают, как развитие статики было подвинуто вперед рассмотрением ее задач с точки зрения динамики, и перед заключением отдела Конт замечает: "Прежде чем гидростатика могла быть включена в статику, необходимо было, чтобы абстрактная теория равновесия была обобщена до прямого приложения к жидким, также как и к твердым, телам. Это было достигнуто, когда Лагранж поставил в основание всей рациональной механики единое начало возможных скоростей". В этом положении мы имеем два факта, прямо не согласных с доктриной Конта: первый, что простейшая наука, статика, достигла своего настоящего развития только при помощи начала возможных скоростей, которое принадлежит более сложной науке, динамике, - и второй, что это "единое начало", лежащее в основе всей рациональной механики, этой самой общей формы, одинаково включающей отношения статических, гидростатических и динамических сил, было добыто только во времена Лагранжа.
Таким образом, несправедливо, чтобы историческая последовательность В отделах математики соответствовала порядку убывающей общности. Несправедливо, чтобы абстрактная математика развилась прежде и независимо от конкретной математики. Несправедливо, чтобы в подразделениях абстрактной математики более общие отделы явились прежде специальных. И несправедливо, чтобы конкретная математика, в каждом из двух ее отделов, начиналась более абстрактными и переходила к менее абстрактным истинам.
Полезно, может быть, заметить мимоходом, что Конт, защищая принимаемый им закон перехода от общего к частному, кое-где делает замечания о двух значениях слова общий, могущих дать повод к сбивчивости. Не говоря о том, может ли утверждаемое различие быть удержано в других случаях, ясно, что в этом случае оно не существует. В разных примерах, приведенных выше, старания самого Конта скрыть или объяснить иначе предшествование специального общему ясно указывают, что общность, о которой там говорится, того же самого рода, какой подразумевается его формулой. И достаточно беглого рассмотрения предмета, чтобы показать, что, даже если б он и покушался на это, он не мог бы отличить той общности, которая, как показано выше, часто приходит напоследок, от общности, которая, по его словам, всегда идет впереди. Ибо какова природа того умственного процесса, посредством которого объекты, измерения, веса, времена и пр. становятся способными получить численное выражение для своих отношений? Этот процесс есть образование известных абстрактных понятий единства, двойственности и множественности, которые одинаково приложимы ко всем вещам. Это есть изобретение общих символов, служащих для выражения числовых отношений между бытиями, каковы бы ни были их особенные характеры. Какова же природа умственного процесса, посредством которого числа получают возможность иметь алгебраическое выражение для своих отношений? Природа этого процесса та же самая. Это есть образование известных абстрактных понятий о численных функциях, остающихся неизменными при всякой величине чисел. Это - изобретение общих символов, служащих для выражения отношений между числами, как числа служат для выражения отношений между вещами. Арифметика может выразить одной формулой величину частной касательной к частной кривой; алгебра может выразить одной формулой величины всех касательных к частной кривой; трансцендентальный анализ может выразить одной формулой величины всех касательных ко всем кривым. Точно так как арифметика имеет дело с общими свойствами линий, поверхностей, объемов, сил, времен, так алгебра имеет дело с общими свойствами чисел, представляемых арифметикой.