Рис. 3 Классификация транспортных каналов
Физические каналы
В LTE определены следующие физические каналы:
Physical Downlink Shared Channel (PDSCH) – физический канал для передачи информации "вниз" с разделением пользователей. Используется для передачи информации каналов DL-SCH и PCH.
Physical Downlink Control Channel (PDCCH) – физический канал управления "вниз". Используется для передачи информации о назначении канального ресурса для передачи транспортных блоков каналов PCH, DL-SCH, UL-SCH и HARQ информации, относящейся к каналу DL-SCH. Также по этому каналу передаются ответы на запросы на доступ к сети. Передача осуществляется с помощью модуляции 4-ФМ.
Physical Hybrid ARQ Indicator Channel (PHICH) – физический канал для передачи HARQ ACK/NACK в ответ при передаче информации "вверх".
Physical Broadcast Channel (PBCH) – физический канал передачи вещательной информации.
Physical Multicast Channel (PMCH) – физический канал групповой передачи пакетов мультимедийного вещания.
Physical Control Format Indicator Channel (PCFICH) – физический канал передачи формата, который используется для канала PDCCH.
Physical Random Access Channel (PRACH) – физический канал передачи запросов случайного доступа.
Physical Uplink Shared Channel (PUSCH) – физический канал передачи пользовательского трафика и сигнализации Uplink Control Information (UCI).
Physical Uplink Control Channel (PUCCH) – физический канал передачи сигнализации UCI в отсутствии канала PUSCH.
На рисунке 4 и 5 приводится взаимосвязь между логическими, транспортными и физическими каналами в нисходящем направлении и восходящем направлении (от eNodeB к UE).
Рис. 4 Взаимосвязь между логическими, транспортными и физическими каналами в нисходящем направлении
Рис. 5 Взаимосвязь между логическими, транспортными и физическими каналами в восходящем направлении
Механизм диспетчеризации и адаптация канала связи
В отличие от предыдущих коммуникационных технологий, использовавших пакетную передачу данных с традиционной структурой пакета, в LTE применяется передача по слотам, в которых нет ни традиционной преамбулы, ни символов контроля четности. Для повышения эффективности использования выделенной базовой станции полосы частот в LTE используется диспетчеризация сетевых ресурсов.
Под диспетчеризацией понимается процесс распределения сетевых ресурсов между пользователями, передающими данные. В технологии LTE предусмотрена динамическая диспетчеризация в восходящем и нисходящем каналах.
Целью диспетчеризации является сбалансированность качества связи и общей производительности системы. В радио интерфейсе LTE реализована функция диспетчеризации в зависимости от состояния канала связи. Она обеспечивает передачу данных на повышенных скоростях (за счет использования модуляции более высокого порядка, уменьшения степени кодировки каналов, передачи дополнительных потоков данных и меньшего числа повторных передач), задействуя для этого временные и частотные ресурсы с относительно хорошими условиями связи. Таким образом, для передачи любого конкретного объема информации требуется меньше времени. Частотно-временная сетка OFDM помогает выбирать ресурсы в частотной и временной областях.
Для трафика сервисов, пересылающих пакеты с небольшой полезной нагрузкой и через одинаковые промежутки времени, объем трафика сигнализации, необходимой для динамической диспетчеризации, может превышать объем переданной пользователем информации. Поэтому в LTE также имеется функция статической диспетчеризации (в дополнение к динамической). Под статической диспетчеризацией понимается выделение пользователю радиочастотного ресурса для передачи определенного числа подкадров.
Механизмы адаптации канала нужны для того, чтобы «выжать все возможное» из канала с изменяющимся качеством связи. Такой механизм «выбирает» схемы модуляции и канального кодирования в соответствии с условиями связи. От его работы зависят скорость передачи данных и вероятность возникновения ошибок в канале.
Регулирование мощности в восходящем канале
Речь идет об управлении уровнем излучаемой терминалами мощности для того, чтобы увеличить емкость сети, расширить зону радио покрытия, повысить качество связи и снизить энергопотребление. Для достижения перечисленных целей механизмы регулирования мощности, как правило, добиваются максимального увеличения уровня полезного принимаемого сигнала при одновременном снижении уровня радиопомех.