Оптическая система глаза человека свободно пропускает и фокусирует на сетчатке излучение видимого (длина волны 390–780 нм) и инфракрасного (до 1,4 мкм) диапазонов спектра. Даже чтобы разрушить сетчатку, а тем более чтобы временно ослепить требуются весьма незначительные плотности энергии лазерного излучения этих диапазонов спектра. Многие же из используемыми в вооруженных силах разных стран лазерных дальномеров и целеуказателей с активными элементами, выполненными на основе иттриево-алюминиевого граната или стекол, активированных ионами неодима, работают именно на длине волны 1,06 мкм, представляющей значительную опасность. Излучение с большей длиной волны считается менее опасным, так как оно поглощается стекловидным телом и роговицей глаза и для их поражения требуются уровни плотности энергии выше на несколько порядков.
Как полагают американские специалисты, даже при боковом (не по оптической оси) попадании в глаз лазерного излучения и точечном выжигании сетчатки поражение может распространяться на периферийные области за счет обширных кровоизлияний. Поражение области сетчатки, соответствующей углу поля зрения 5°, значительно затруднит вождение автомобиля, бронетанковой техники, а также распознавание на местности деталей объектов, что, в свою очередь, вызовет у личного состава серьезные трудности при ведении прицельной стрельбы из оружия различных видов. Чтобы нанести такое поражение органам зрения, достаточно, чтобы мощность излучения составляла в режиме непрерывной генерации всего несколько милливатт или в импульсе длительностью несколько наносекунд — несколько микроджоулей энергии.
Современный уровень развития науки и техники уже в настоящее время дает возможность создания портативных систем лазерного оружия тактического назначения. По предварительным оценкам, в различных видах современного боя оно будет способно вызывать временное (до 3 мин) ослепление личного состава в радиусе 1 км. Такая дальность предъявляет соответствующие требования при разработке данного оружия к его энергетическим и массо-габаритным характеристикам. При этом существенным фактором является состояние атмосферы, определяемое, с одной стороны, погодными условиями в конкретный период ведения боевых действий, а с другой — запыленностью и задымленностью отдельных участков местности. При моделировании процесса применения лазерного оружия обычно руководствуются тем, что отрицательное влияние атмосферы будет уменьшать дальность его действия, как минимум, на 1 %. Однако уже имеющаяся технологическая база позволяет увеличить ее до 3 км при небольших массо-габаритных характеристиках портативного лазерного оружия, не ограничивающих возможности ведения боевых действий.
Наличие в частях и подразделениях сухопутных войск лазерного оружия, специально предназначенного для ослепления личного состава, окажет прежде всего психологическое воздействие на противника, который будет постоянно осознавать возможность поражения органов зрения. Кроме того, лицам, ведущим разведку с помощью оптических и оптикоэлектронных приборов, необходимо преодолевать своеобразный психологический барьер, так как Имеются реальные примеры применения противником лазерного оружия, повлекшие за собой тяжелые последствия для органов зрения.
Вместе с тем даже такое несомненное преимущество лазерного оружия, как практически мгновенное действие, которое помогает экономить время на достаточно сложном процессе прицеливания, включающем определение требуемого упреждения с учетом скорости и направления ветра, дальности до цели и параметров ее движения, не позволило решить проблему контроля поражения цели. Дело в том, что использование невидимого луча инфракрасного диапазона не дает возможности наблюдать, удалось ли поразить цель с помощью лазерного излучения или нет. Определить степень поражения в таком случае можно только по внешним признакам поведения цели на поле боя. По мнению западных специалистов, частично решить эту проблему позволит снижение требований к точности прицеливания, ввиду того что за счет расходимости излучения диаметр пятна луча на цели составит от десятков сантиметров до нескольких метров (в зависимости от дальности).