Когда же будете перемещать ручку регулировки длины развертки в другое крайнее положение, длина наклонной линии станет уменьшаться и достигнет минимального значения (рис. 32, б).
Рис. 32, а, б
По масштабной сетке вы сможете определить амплитуду пилообразного напряжения при крайних положениях ручки указанной регулировки — 3,5 В и 1 В.
Затем переключите входной щуп осциллографа на вывод коллектора транзистора VT7 (или на точку соединения конденсаторов С3 и С4), а сам осциллограф переключите в режим закрытого входа и переместите линию развертки на середину масштабной сетки. На экране должен появиться положительный импульс (рис. 32, в), изображение которого в делениях масштабной сетки будет оставаться стабильным при изменении длительности в широких пределах, а также длины ее линии. Если же при изменении длины развертки, а значит, амплитуды входного сигнала на зажиме ХТ7, импульс будет пропадать, следует подобрать точнее резистор R18.
При больших длительностях развертки (10, 20 и 50 мс/дел.) будет наблюдаться искажение сигнала (рис. 32, г), свидетельствующее о дифференцировании импульса во входных цепях осциллографа из-за недостаточной емкости разделительного конденсатора.
Рис. 32, в, г
Выход здесь простой — переключить осциллограф в режим открытого входа, а входной щуп подключить к исследуемой цепи через бумажный конденсатор емкостью 1…2 мкФ.
После этого точно так же щуп с конденсатором подключают к выходному зажиму ХТ3 и наблюдают на экране две линии развертки, как и с предыдущим коммутатором. Чувствительность осциллографа устанавливают равной 0,1 В/дел. Дальнейшая работа с коммутатором не отличается от ранее описанной.
Возможно, вы захотите удостовериться в поочередном переключении линий развертки. Тогда установите кнопками осциллографа самую большую длительность — 50 мс/дел. и поверните ручку длины развертки в крайнее правое положение. Вы увидите медленно перемещающуюся точку то по траектории верхней линии развертки, то по траектории нижней линии.
Не меньший интерес представляют коммутаторы на микросхемах.
На рис. 33, например, приведена схема простейшего коммутатора на одной микросхеме, разработанного курским радиолюбителем И. Нечаевым. Правда, коммутатор обладает сравнительно низким входным сопротивлением, что ограничивает возможности его применения. Тем не менее он заслуживает внимание своей простотой и интересным принципом действия.
На элементах DD1.1 и DD1.2 микросхемы собран генератор прямоугольных импульсов, следующих с частотой около 200 кГц. Элементы DD1.3 и DD1.4 работают инверторами и позволяют согласовать выходное сопротивление генератора с сопротивлением электронных ключей, управляющих прохождением сигналов через каналы коммутатора, а также обеспечить соответствующую развязку между каналами.
С выходов инверторов импульсы (они противофазны) генератора поступают через резисторы R4—R7 на ключи, выполненные на диодах VD1—VD4 для первого канала и на диодах VD5—VD8 — для второго. Если, к примеру, на выходе элемента DD1.3 будет уровень логической 1, а в это время на выходе элемента DD1.4 — уровень логического 0, через резисторы R5, R7 и диоды VD5—VD8 потечет ток. Ключ на этих диодах окажется открытым, сигнал с гнезд разъема XS2 попадет на гнезда разъема XS3, к которым подключаются щупы входа X осциллографа. В то же время ключ на диодах VD1—VD4 будет закрыт, сигнал с входных гнезд разъема XS1 на осциллограф не попадет.
Когда логические уровни на выходах элементов DD1.3 и DD1.4 изменятся, к осциллографу попадет сигнал, поступающий на разъем XS1. Амплитуду сигнала, поступающего с входных разъемов ХS1 и XS2 на осциллограф, можно регулировать переменными резисторами R1 и R2. Расстояние между «линиями развертки», создаваемыми коммутатором, регулируют переменным резистором R9. При перемещении движка резистора вверх по схеме эти линии расходятся, и наоборот.
Чтобы максимально подавить помехи от генератора импульсов, проникающие на входные и выходные цепи коммутатора, параллельно источнику питания (конечно, при замкнутых контактах выключателя SВ1) включена цепочка из оксидных конденсаторов С2, С3 и подстроечного резистора R10 — она создает искусственную среднюю точку.