Выбрать главу

Тем временем в США начал набирать популярность проект, сулящий инженерам большие проблемы в области статики: «Спейс Шаттл». Он представляет собой космический аппарат в виде самолета с реактивными двигателями, тяжелыми топливными баками, прикрепленными к днищу, и твердотопливными ускорителями по бокам. Даже если сбалансировать такую систему, то после старта топливо будет уходить из баков, они станут легче, а из-за этого сместится центр масс. Система начнет заваливаться примерно так, как человек, несущий на спине слишком тяжелый рюкзак. У обычных ракет такая проблема, разумеется, тоже может возникнуть. Чтобы ее избежать, их конструкция представляет собой цилиндр или конус (тело вращения) и имеет осевую симметрию. Центр масс в таком случае при истечении топлива будет только опускаться, но оставаться примерно на одной вертикальной линии. Баланс будет сохраняться. У шаттла нет полной симметрии, и реализовать эту простую идею не получится в принципе. У советского шаттла – корабля «Буран» – была похожая конструкция и похожая проблема. Центр масс в полете будет смещаться и выводить из равновесия всю систему.

Макет корабля «Буран»

Для решения проблемы инженеры изготовили двигатели подвижными. Они могли менять направление тяги. Также в конструкцию в хвостовой части был включен так называемый балансировочный щиток.

Главное отличие советского многоразового космического аппарата от его американского собрата – маршевые двигатели. В проекте «Буран» они размещены не на самом корабле, а на ракете-носителе «Энергия». Проблема с балансом произошла как раз при ее старте, но с другим космическим аппаратом – «Скиф-ДМ», который более известен под названием «Полюс». При взлете полезный груз перевесил, и «Энергия» немного завалилась. Это было скорректировано, и ракета-носитель со своим грузом на орбиту все-таки вышла, но на стартовой площадке возникли большие проблемы. Струя от двигателя после отклонения ракеты оказалась направлена не в специальный газоотводный лоток, а в сторону других важных элементов стартового комплекса. Так, например, горячий поток из двигателей своим давлением выбил огромною трехтонную герметичную дверь и создал немалые разрушения.

Интересно, что этого можно было избежать благодаря предложенной инженерами системе сопровождения, от которой все-таки отказались. Она была разработана для предотвращения заваливания ракеты-носителя из-за ветра. Так как воздушный поток должен иметь огромную силу, чтобы сдвинуть многотонную ракету, а шквалистых порывов не предвиделось, это устройство было убрано. Инженеры боялись, что механизм фиксации слишком сложен, и если в нем есть дефект, то неисправный держатель будет мешать пуску.

Опасения были обоснованными, так как в США как раз использовались подобные устройства и их поломки неоднократно происходили как с шаттлами, так и со стандартными ракетами-носителями. Крепление к стартовому комплексу было жестким с применением специальных взрывающихся болтов – пироболтов. Они держали ракету-носитель, не давая ей упасть. Во время пуска по команде пироболты должны были разрываться и тем самым освобождать ракету-носитель от стартового стола. Достаточно часто они не срабатывали.

Правда, к проблемам на старте это не приводило, так как ни один болт не смог бы удержать мощь рвущейся в небо ракеты и удержать ее. Однако при этом крепления вырывались с корнем, и их потом необходимо было восстанавливать.

В СССР для фиксации других ракет-носителей семейства Р-7 на стартовой площадке была разработана система «Тюльпан», которая используется по сей день. Она применяется для решения проблемы с балансом и представляет собой нечто напоминающее качели. Точка опоры с шарнирным механизмом, с одной стороны – стрела с полукруглым держателем, а с другой стороны – тяжелый груз-балансир.

Таких опор четыре штуки. Когда ракету-носитель устанавливают на эти конструкции, сама ракета своим весом прижимает их к себе, а они удерживают ее, не давая наклониться. Когда же двигатели набрали достаточно мощности, чтобы ракета не нуждалась в опоре, нагрузка со стрелы снимается, а тяжелый груз с другой стороны перевешивает и отклоняет опоры от ракеты. Действие напоминает раскрытие лепестков цветка, что и дало системе название «Тюльпан».

Однажды представители США оказались на космодроме Байконур и очень интересовались, как советским инженерам удалось добиться синхронного одномоментного отделения опор. Как видите, все просто: «Тюльпан» – полностью механическая система с минимумом деталей, которая работает на третьем законе Ньютона. Он гласит: сила действия равна силе противодействия.