Как рецептор, так и эффектор характеризуются преобразованием вида носителя информации.
Асимметричность гомеостатической сети является причиной ее роста до тех пор, пока сеть не достигает свойства симметричности, т.е. не становится симметричным гомеостатом. Таким образом, симметричный гомеостат можно трактовать как ЦЕЛОЕ (в некотором смысле как самодостаточное), асимметрическую сеть гомеостатов - как ЧАСТЬ гомеостата интегративно более высокого уровня.
Когда асимметричность гомеостатической сети, состоящей из однородных по информационным носителям гомеостатов, завершается созданием симметричного гомеостата, попытка дальнейшего наращивания тех же однородных гомеостатов не эффективна; симметричный гомеостат снимает с них валентность, что приводит их к гибели. Дальнейшее непосредственное склеивание возможно только с гомеостатами, где информация переносится другими материальными носителями.
Примеры интегративных симметричных гомеостатов в биологии:
- бактерии
- одноклеточные животные
- многоклеточные организации:
животные, растения
- популяция вида
- экосистема
- ноосфера, и т.д.
Примеры природных "неживых" симметричных гомеостатов:
- вакуум;
- суб-атомарные частицы (протон, нейтрон, электрон и т.п.);
- атомы;
- молекулы;
- минералы, вещества;
- планеты;
- звезды;
- планетные системы;
- галактики;
- вселенная.
Целостность, диапазон самостоятельности.
При склеивании симметричных гомеостатов образовавшаяся система становится симметричной в целом только тогда, когда каждый из гомеостатов теряет свою самодостаточность. Потеря самодостаточности компенсируется более эффективной переработкой части информационного потока - специализацией, при этом часть гомеостатов, составляющих бывший симметричный гомеостат, потеряет свою валентность и отмирает или реорганизуется. Часть гомеостата, оставшаяся в асимметричном состоянии, погашает асимметричность либо вторым бывшим симметричным гомеостатом, претерпевшим такую же метаморфозу (но при этом, произошедшие в обоих бывших гомеостатах изменения дополняют новую организацию до ЦЕЛОГО), либо происходит реорганизация части гомеостатов несимметричной сети в симметричную.
Понятие целого имеет относительный смысл и ограничивается понятием границ расширения нормы реакции, что можно в определенном смысле трактовать как "свободу воли" гомеостата.
Границы расширения нормы реакции гомеостата (или свобода воли) определяются возможностью переключения входов симметричного гомеостата с одной части внешнего информационного потока на другую без потери целостности, т.е. без перехода в асимметричное состояние.
Для гомеостатов одного иерархического уровня интеграции (сеть гомеостатов симметричного гомеостата) внутренняя свобода воли одного ограничивается другими однородными первому гомеостатами. При условии нарушения целостности гомеостата или сужения диапазона свободы воли части однородных гомеостатов в общей сети происходит выравнивание свободы воли всех. Такой процесс может происходить и в группе симметричных однородных, относительно независимых гомеостатов. Этот процесс называется принципом согласия [5].
Границы нормы реакции симметричного гомеостата высшего уровня шире свободы воли каждого из однородных гомеостатов нижележащего уровня, но ограничиваются всей иерархической сетью гомеостатов в целом.
Искусственное сужение свободы воли гомеостатов приводит либо к патологии функционирования систем, включающих в себя эти гомеостаты, либо к появлению ограничений в широте нормы реакции симметричного гомеостата в целом.
Процессы компенсации и адаптации
Каждая гомеостатическая сеть стремится сохранить свою целостность функциональных связей до тех пор, пока не истрачен запас внутреннего противоречия.
Исчерпывание запаса противоречия приводит к разрыву обратных связей в гомеостате и образованию свободных валентностей. Свободные валентные связи замыкаются на другие гомеостаты (прежде всего родственные по носителю информации), и новая гомеостатическая система использует обобщенные запасы противоречия. При исчезновении действующего фактора, на который расходовался запас противоречия, по мере восстановления его восстанавливается первичная структура и исходные гомеостатические сети разъединяются. Этот процесс называется компенсацией.
При невозможности разъединиться, когда при объединении произошли необратимые изменения сетевых структур, процесс называется адаптацией. В этом случае исчезновение действующего фактора, который вызвал объединение, сужает границы нормы реакции и гомеостат оказывается в патологическом состоянии (плата за адаптацию).
Динамичность образования новых конфигураций в гомеостатических сетях живых организмов постепенно возрастает в направлении физиологическая психофизиологическая - психическая системы. На уровне мозговых структур "гипоталамус - кора головного мозга" динамика приобретает достаточно выраженный характер вплоть до так называемых статистических ансамблей гомеостатов, которые достаточно легко перестраиваются под сиюминутные задачи управления случайных флуктуаций среды обитания.
Некоторые свойства симметричных и несимметричных гомеостатов
Несимметричность сети гомеостатов возникает при недостаточной мощности выходных параметров, требуемых системой в целом. Однако существуют максимальные пределы роста несимметричности. Если для сформированной по максимальному размеру несимметричной сети требуемая мощность не достигнута, то строится параллельная ей вторая несимметричная сеть и т.д. Достигшая максимального размера несимметричная сеть начинает эволюцию к созданию симметричной гомеостатической сети.
Ограничение пределов роста несимметричности зависит от скорости притока пластических и энергетических веществ из окружающей среды потребляемых сетью. Достигнув максимального предельного размера, несимметричная сеть начинает уменьшать свою реактивность за счет уменьшения связей. При этом число первичных гомеостатов остается постоянным. Несимметричная сеть уменьшается, но достраивается (перестраивается часть) симметризирующая сеть до симметричного гомеостата. Уменьшение размеров несимметричной части гомеостатов нижнего уровня уменьшает мощность сети и вызывает образование параллельной сети. Таким образом, в растущей сети гомеостатов возникает волновой, постепенно затухающий процесс генерационных явлений. Аналогом такого процесса является рост ткани и ее дифференциация в специализированную и, наоборот, целостная гомеостатическая тканевая система, перейдя каким-либо путем в несимметричное состояние, вызывает процессы деспециализации клеток, составляющих гомеостат ткани, что позволяет включать процессы пролиферации.
Пример гомеостата ткани, ставшего несимметричным в результате травмы [80].
Гомеостат регенерирующей ткани представляется как согласованное взаимодействие двух разнонаправленных процессов клеточной деструкции и клеточной репродукции. Регулирующими факторами являются внутритканевые клеточные корреляции, определяющие качественные характеристики и локализацию данного гомеостата, а также регуляторы внешней среды, которые играют модулирующую роль, определяют количественные параметры качественных характеристик данного гомеостата. В качестве внутриклеточных регуляторов выступают целостный гистоскелет ткани, контактные клеточные взаимодействия, продукты цитолиза, кейлоны, общее количество антигенных детерминант, специфичных для данной ткани, и др.
Взаимодействие процессов клеточной деструкции и репродукции позволяет обеспечивать высокую адаптивную способность регенерирующей ткани к действию экстремальных факторов. Травма является таким экстремальным фактором, под воздействием которой гибнет часть клеточных элементов, что интерпретируется нами как переход целостного (симметричного) гомеостата в несимметричное состояние. Несимметричность служит стимулом для активации пролиферативных процессов через вышеназванные механизмы. Известно, что в условиях активной клеточной пролиферации может происходить реэкспрессия эмбриональных генов, изменяться спектр синтеза белков и их изоморфное строение, возникать доминирование восстановительных реакций над окислительными, повышаться уровень сульфгидрильных групп и активность антиоксидантных ферментов. В итоге в стимулированной к регенерации ткани метаболизм клеток перестраивается на низкодифференцированный, связанный с обеспечением преимущественно митотического процесса режим работы, клетки переходят к филогенетически более древнему, простому и устойчивому функционированию. Таким образом, при воздействии повреждающего фактора усиление одного из компонентов гомеостаза (деструктивных процессов) приводит к активации противоположного компонента (пролиферативных процессов). В свою очередь, ускоренная смена клеточных популяций ведет к сдвигу метаболических профилей новообразованных клеток, способствуя их адаптации к изменившимся условиям и детерминируя повышение устойчивости гомеостата в целом.