Выбрать главу

Такой подход является одним из главных источников неэффективности реализаций языка Smalltalk. Это также объясняет, почему он (по крайней мере, в коммерческих реализациях) не поддерживает множественного наследования. Причина - в том, что из-за необходимости обходить весь граф, а не одну ветвь, накладные расходы оказываются чрезмерными.

К счастью, использование статической типизации устраняет эти неприятности. При правильно построенной системе типов и алгоритмах компиляции нет никакой нужды перемещаться по структуре наследования во время выполнения. Для ОО-языка со статической типизацией возможные типы x не произвольны, а ограничены потомками исходного типа x, поэтому компилятор может упростить работу системы выполнения, построив массив структурных данных, содержащих всю необходимую информацию. При наличии этих структур данных накладные расходы на динамическое связывание сильно уменьшаются: они сводятся к вычислению индекса и доступу к массиву. Важно не только то, что такие затраты невелики, но и то, что они ограничены константой, и поэтому можно не беспокоиться о рассмотренной выше проблеме соотношения между переиспользуемостью и эффективностью. Будет ли структура наследования в вашей системе иметь глубину 2 или 20, будет ли в ней 100 классов или 10000, максимальные накладные расходы всегда одни и те же. Они не зависят и от того, является ли наследование единичным или множественным.

Открытие в 1985г. этого свойства, т.е. того, что даже при множественном наследовании можно реализовать вызов динамически связываемого компонента за константное время, было главным побудительным толчком к разработке проекта (среди прочего приведшего к появлению первого и настоящего изданий этой книги), направленного на построение современного окружения для разработки ПО, отталкивающегося от идей великолепно введенных языком Simula 67, распространенных затем на множественное наследование (длительный опыт применения Симулы показал, что непозволительно ограничиваться единичным наследованием), приведенных в соответствие с принципами современной программной инженерии и объединяющих эти идеи с самыми полезными результатами формальных подходов к спецификации, построению и верификации ПО. Создание эффективного механизма динамического связывания за константное время, которое на первый взгляд может показаться второстепенным среди указанного набора целей, на самом деле было настоятельно необходимым.

Эти наблюдения могут показаться странными тому, кто познакомился с ОО-технологией через линзу представлений об ОО-анализе и проектировании, в которых реализация и эффективность рассматриваются как приземленные предметы, которыми следует заниматься после того, как решено все остальное. Эффективность является одним из ключевых факторов, который должен рассматриваться на всех шагах, когда речь идет о реальной разработке промышленного ПО, о реальной увязке инженерных решений. Как отмечалось в одной из предыдущих лекций, если вы откажетесь от эффективности, то эффективность откажется от вас. Конечно, ОО-технология это нечто большее, чем динамическое связывание за константное время, но без этого не могло бы быть никакой успешной ОО-технологии.

Оценка накладных расходов

Оказывается, можно грубо оценить потери на накладные расходы для описанных выше методов динамического связывания. Следующие цифры взяты из опытов ISE по использованию динамического связывания (данные получены при отключении объясняемой ниже оптимизации статического связывания).

Для процедуры, которая ничего не делает, т. е. описана как p1 is do end, превышение времени динамического связывания над временем статического связывания (например, над эквивалентной процедурой на C) составляет около 30%.

Это, конечно, оценка сверху, поскольку реальные процедуры что-нибудь да делают. Цена динамического связывания одинакова для всех процедур независимо от времени их выполнения, поэтому, чем больший объем вычислений выполняет процедура, тем меньше относительная доля накладных расходов. Если вместо p1 использовать процедуру, которая выполняет некоторые типичные операции, такую как

p2 (a, b, c: INTEGER) is

local

x, y

do

x := a; y := b + c + 1; x := x * y; p2

if x > y then x := x + 1 else x := x - 1 end

end

то накладные расходы падают до 15%. Для программы, выполняющей нечто более существенное (например, некоторый цикл) их доля совсем мала.

Статическое связывание как оптимизация

В некоторых случаях главным требованием является эффективность, и даже указанные выше небольшие накладные расходы нежелательны. В этом случае можно заметить, что они не всегда обоснованы. Вызов x.f (a, b, c...) не нуждается в динамическом связывании в следующих случаях:

1 f нигде в системе не переопределяется (имеет только одно объявление);

2 x не является полиморфной, иначе говоря, не является целью никакого присоединения, источник которого имеет другой тип.

В любом из таких случаев, выявляемых хорошим компилятором, сгенерированный для x.f (a, b, c...) код может быть таким же, как и код, генерируемый компиляторами C, Pascal, Ada или Fortran для вызова f (x, a, b, c...). Никакие накладные расходы не потребуются.

Компилятор ISE, являющийся частью окружения, описанного в последней лекции, сейчас выполняет оптимизацию (1), планируется добавить и (2) (анализ (2) является, фактически, следствием механизмов анализа типов, описанных в лекции о типизации).

Хотя (1) интересно и само по себе, непосредственная его польза ограничивается сравнительно низкой стоимостью динамического связывания (см. приведенную выше статистику). Настоящий выигрыш от него непрямой, поскольку (1) дает возможность третьей оптимизации:

4. При любой возможности применять автоматическую подстановку кода процедуры.

Такая подстановка означает расширение тела программы текстом вызываемой процедуры в месте ее вызова. Например, для процедуры

set_a (x: SOME_TYPE) is

-- Сделать x новым значением атрибута a.

do

a := x

end

компилятор может сгенерировать для вызова s.set_a (some_value) такой же код, какой компилятор Pascal сгенерирует для присваивания s.a := some_value (недопустимое для нас обозначение, поскольку оно нарушает скрытие информации). В этом случае вообще нет накладных расходов, поскольку сгенерированный код не содержит вызова процедуры.

Подстановка кода традиционно рассматривается как оптимизация, которую должны задавать программисты. Ada включает прагму (указание транслятору) inline, C и С++ предлагают аналогичные механизмы. Но этому подходу присущи внутренние ограничения. Хотя для небольшой, статичной программы компетентный программист может сам определить, какие процедуры можно подставлять, для больших развивающихся проектов это сделать невозможно. В этом случае компилятор с приличным алгоритмом определения подстановок будет намного превосходить догадки программистов.