Выбрать главу

display

select

window_id

end

feature

.... Остальное, как ранее...

end

Обратите внимание на необходимость выбора (select) одного из вариантов id.

Дублируемое наследование и универсальность

В завершение мы должны рассмотреть особый случай дублируемого наследования. Он касается компонентов, содержащих родовые параметры. Рассмотрим следующую схему (подобная ситуация может возникнуть не только при прямом, но и при косвенном дублируемом наследовании):

class A [G] feature

f: G;...

end

class B inherit

A [INTEGER]

A [REAL]

end

В классе B по правилу дублируемого наследования компонент f должен использоваться совместно. Но из-за универсализации возникает неоднозначность, - какой результат должен возвращать компонент - real или integer? Та же проблема возникнет, если f имеет параметр типа G.

Подобная неоднозначность недопустима. Отсюда правило:

Универсальность в правиле дублируемого наследования

Тип компонента, совместно используемого в правиле дублируемого наследования, а также тип любого из его аргументов не может быть родовым параметром класса, от которого произошло дублируемое наследование компонента.

Для устранения неоднозначности можно выполнить переименование в точке наследования.

Правила об именах

(В этом разделе мы только формализуем сказанное выше, поэтому при первом чтении книги его можно пропустить.)

Мы уже видели, что в случае возможной неоднозначности конфликты имен пресекаются, хотя некоторые ситуации бывают вполне корректны. Чтобы в представлении множественного и дублируемого наследования не оставить никакой неоднозначности, полезно обобщить ограничения на конфликт имен в едином правиле: Заканчивая этот раздел, сведем изложенный ранее материал в единое правило:

Конфликты имен: определение и правило

В классе, образованном в результате множественного наследования, возникает конфликт имен, если два компонента, наследованные от разных родителей, имеют одно и то же финальное имя.

Конфликт имен делает класс некорректным за исключением следующих случаев:

1 Оба компонента унаследованы от общего предка, и ни один из них не получен повторным объявлением версии предка.

2 Оба компонента имеют совместимые сигнатуры, и, по крайней мере, один из них наследуется в отложенной форме.

3 Оба компонента имеют совместимые сигнатуры и переопределяются в новом классе.

Ситуация (1) описывает совместное использование при дублируемом наследовании.

Для случая (2) "наследование в отложенной форме" возможно по двум причинам: либо отложенная форма задана родительским классом, либо компонент был эффективным, но порожденный класс отменил его реализацию (undefine).

Ситуации (2) и (3) рассматриваются отдельно, однако, их можно представить как один вариант - вариант соединения (join). Переходя к n компонентам (n >= 2), можно сказать, что ситуации (2) и (3) возникают, когда от разных родителей класс принимает n одноименных компонентов с совместимыми сигнатурами. Конфликт имен не делает класс некорректным, если эти компоненты могут быть соединены, иными словами:

[x]. все n компонентов отложены, так что некому вызвать конфликт определений;

[x]. существует единственный эффективный компонент. Его реализация станет реализацией остальных компонентов;

[x]. два или несколько компонентов эффективны. Класс должен их переопределить. Новая реализация будет использоваться как для переопределяемых компонентов, так и для любых отложенных компонентов, участвующих в конфликте.

И, наконец, точное правило употребления конструкции Precursor. Если в переопределении используется Precursor, то неоднозначность может возникнуть из-за того, что неясно, версию какого родителя следует вызывать. Чтобы решить эту проблему, следует использовать вызов вида Precursor {PARENT} (...), где PARENT - имя желаемого родителя. В остальных случаях указывать имя родителя не обязательно.

Обсуждение

Давайте проанализируем следствия некоторых решений, принятых в этой лекции.

Переименование

Любой язык, поддерживающий множественное наследование, должен как-то решать проблему конфликта имен. Коль скоро мы не можем и не должны требовать от разработчиков внесения изменений в исходные классы, есть всего два решения, помимо тех, что были описаны выше:

[x]. требовать от клиентов устранения всех неоднозначностей;

[x]. выбирать некую интерпретацию по умолчанию.

В соответствии с первым подходом, класс C, наследующий компонент f от A и B, будет нормально откомпилирован, возможно, с выдачей предупреждения. Ничего страшного не произойдет, пока в тексте клиента C не обнаружится нечто подобное:

x: C

... x.f ...

Клиенту придется квалифицировать ссылку на f, используя нотацию, например, такую: x.f | A, либо x.f | B, чтобы указать подразумеваемый класс.

Это решение противоречит, однако, одному из принципов, важность которого мы подчеркивали в этой лекции: структура наследования класса касается лишь самого класса и его предков, но не клиентов, за исключением случаев полиморфного применения компонентов. Пользуясь f из C, я не должен знать о том, введена эта функция классом C либо получена им от A или B.

Согласно второй стратегии, запись x.f корректна. Выбор одного из вариантов делается средствами языка. Критерием выбора является, например, порядок, в котором C перечисляет своих родителей. Для обращения к другим вариантам может существовать особая форма записи.

Данный подход реализован в нескольких производных от Lisp языках с поддержкой множественного наследования. Тем не менее, выбор семантики по умолчанию весьма опасен ввиду потенциальной несовместимости со статической типизацией.

Эти проблемы решает смена имен. Одним из ее преимуществ является возможность создания клиентского интерфейса с "понятными" именами компонентов.

ОО-разработка и перегрузка

Анализ роли имен, сделанный в этой лекции, позволяет вернуться к вопросу о внутриклассовой перегрузке (in-class name overloading).

Напомню, что в таких языках, как Ada 83 и Ada 95, перегрузка разрешена - можно давать одно имя разным компонентам одного синтаксического модуля. Например, в одном пакете возможны определения:

infix "+" (a, b: VECTOR) is...