Удар или трение, приходящиеся на отдельный участок поверхности пиротехнического состава при отсутствии условий, способствующих повышению давления при горении, вызывают обычно только частичный взрыв состава в том месте, которое подвергалось соответствующему механическому воздействию, остальная масса состава сгорает нормально как при воздействии обычного теплового импульса.
Попадание в пиросоставы винтовочной пули может вызвать во многих случаях воспламенение, а в том случае, если пиросостав находится в прочной оболочке, и взрыв пиросостава.
Такое же нарастание давления, вызывающее переход горения во взрыв, возникает в некоторых случаях при одновременном сжигании большого количества (10кг и более) порошкообразных быстро горящих составов.
Очень простое приспособление для выяснения возможности перехода горения пиросоставов и ВВ в замкнутом объеме во взрыв было предложено К.К. Андреевым. Приспособление представляет собой прочную замкнутую со всех сторон железную трубку (длиной 200мм и внутренним диаметром 40мм), которая частично заполняется пиросоставом или ВВ (50г). Затем содержимое поджигают шашечкой воспламенительного состава, воспламеняемой при помощи электровоспламенителя. Дробление трубки на большое число осколков (пять – шесть и более) указывает на то, что горение переходит во взрыв.
Кенен и Иде применили похожее устройство, отличающееся от устройства Андреева наличием отверстия в диске, перекрывающем один из торцов трубки и устройством принудительного нагрева. По размеру отверстия, при котором происходит взрыв, можно судить о склонности ВВ к взрывчатому разложению при нагревании (внутренний диаметр трубы 24мм, длина 75мм, масса, исследуемого ВВ 30г).
Таблица 23. Результаты испытаний ВВ по методу Кенена и Иде
ВВ
Температура воспламенения [°С]
Диаметр отверстия при взрыве [мм]
Пироксилин (N 13,4%)
180
20
Черный порох
300
20
ПХА
>360
8
НТА
>360
1
Тротил
295
5
ТЭН
200
6
Пикриновая кислота
300
4
Азиды (Са, Ва, Sr)
178. ..200
16. ..24
Из таблицы 23 видно, что при диаметре отверстия 20мм могут взрываться пироксилин, порох и азиды. В этих веществах взрывное разложение легче всего развивается при нагревании, однако, его скорость конечно уступает, например, скорости взрыва в пикриновой кислоте.
Ту же цель выяснения поведения пиросостава при горении в полузамкнутом объеме преследует и испытание в блоке Трауцля, с применением в качестве начального импульса не капсюля детонатора, а небольшого заряда дымного пороха.
Таблица 24. Зависимость расширения в блоке Трауцля от характера начального импульса
Состав (непрессованный) [%]
Расширение [см]
навеска 20 г
Начальный импульс
Бикфордов шнур
Капсюль-детонатор №8
Перхлорат калия
85
198
318
Древесный уголь
15
Перхлорат калия
59
49
88
Магний
41
Нитрат бария
89
0
120
Идитол
11
Тротил прессованный
—
—
718
Взрывчатыми свойствами обладают также смеси магниевого порошка и алюминиевой пудры с водой. Реакция этих металлов с водой происходит с большим выделением тепла и значительного количества газов.
H2O + Mg = MgO + H2 + 78ккал
В пересчете на 1г смеси это дает 1,86ккал тепла и 530см3 водорода.
Таким образом, имеются все условия для возникновения взрыва, который и может быть осуществлен при помощи капсюля-детонатора № 8 в прочной оболочке. Однако в связи с недостаточной гомогенностью системы, она обладает способностью к возникновению взрыва, но не обладает способностью к его устойчивому распространению. Вполне вероятно, что применяя ультрадисперсные порошки металлов и предварительный нагрев системы (под давлением) можно добиться и распространения взрыва в указанных системах.
Вообще, виды инициирования взрывного разложения еще недостаточно изучены, поэтому необходима крайняя осторожность при любых видах воздействия на пиросмеси и ВВ. Известны, например, случаи взрывчатого разложения при прессовании тщательно промытой нитроклетчатки. Интересно, что такие взрывы происходили при медленном наращивании давления на мокрый пироксилин, находящийся в прессформе, а в момент взрыва киносьемка фиксировала ручьем льющуюся из прессформы воду.