Другой формой биологической памяти является иммунологическая память, тесно связанная с генетической. Этот вид фиксации информации состоит в том, что при попадании в организм чужеродных тел и веществ (антигенов) проявляется способность узнавать их в случае их повторного попадания, связывать и включать неспецифические механизмы их уничтожения. Иммунные белки, способные разрушать антигены, называются антителами и располагаются на поверхностной мембране лимфоцитов (иммуннокомпентентные лимфоциты). Антитела на лимфоцитах являются рецепторами для антигенов, причем каждый лимфоцит имеет рецепторы только к одному или к нескольким сходным антигенам. Все лимфоциты, несущие одинаковый рецептор, принадлежат к одному клону и являются потомками одной материнской клетки с таким же рецептором.
При первой встрече с антигеном происходит формирование клона (увеличение числа соответствующих лимфоцитов) и их дифференцировка на эффекторные клетки и клетки памяти. Эффекторные клетки живут несколько дней, а клетки памяти остаются в организме на всю жизнь и при повторной встрече с антигеном способны вновь преобразовываться в клетки обоих типов. Антигены становятся селективными агентами, обеспечивающими материал для отбора, они как бы «узнают» рецепторы антител, связываются с ними и стимулируют их размножение. Таким образом из огромного набора вариаций антител антиген отбирает единственную и стимулирует ее количественный рост. Процесс селекции клонов и обусловливает иммунологическую память, представляя эволюционно более гибкий вариант генетической памяти.
Итак, мы рассмотрели фиксацию информации в организме человека методом генетической и иммунологической памяти, а теперь перейдем к рассмотрению самой сложной — нервной памяти. Комплекс структурно–функциональных изменений, выражающийся в способности нервной системы фиксировать и хранить информацию, хранить реакции организма на эту информацию, а также использовать эту информацию для построения текущего поведения — это и есть нервная или нейрологическая память, а сам процесс называется процессом образования энграммы.
Рассмотрим всю последовательность фиксации организмом информационных раздражении. Итак, информационный сигнал поступил на рецептор, преобразовался в электрический нервный импульс и временно повысил проводимость в определенных синапсах, на что ушло некоторое время. Сам же след от информационного воздействия сохраняется до 500 мс (явление сенсорной памяти), но обычно стирается за 150 мс. У некоторых людей–эйдетиков сенсорная память (например, сохранении зрительного образа при чтении) обладает неограниченной длительностью (Шерешевский и др.).
Дальнейшее движение информации, преобразованной в нервные импульсы, приводит к их многократной циркуляции (ревербации) по замкнутой системе нейронов, что лежит в основе так называемой -
кратковременной памяти, объем которой у человека измеряется в 7 ±2 единицы, а длительность — в несколько секунд.
В частности установлено, что информация о пространственном расположении условного сигнала кодируется в импульсной активности нейронов прежде всего лобной и теменной ассоциативных полей коры больших полушарий. Кодирование осуществляется либо рисунком разрядов нейронов, либо частотой импульсации нейронов (пространственно–селективных), подразделяемых на несколько групп.
Действие информации одновременно приводит и к изменениям структурных и ферментных белков, изменению концентрации и перемещению нейромедиаторов. Этот синаптосомальный уровень информационной реакции организма длится от нескольких минут до нескольких часов и называется промежуточная память. Промежуточная память способна увеличивать объем кратковременной памяти и увеличивать ее длительность, Параллельно с предыдущими информационными процессами идет образование новой устойчивой внутримозговой функциональной структуры, базирующейся на изменениях в мембранах нейронов и на межнейронных связях, приводящий к феномену долговременной памяти, то есть, в принципе, к постоянной фиксации информации. Механизм долговременной фиксации информации проявляется в результате синтеза нуклеиновых кислот и белков, приводящий к образованию макромолекул, активизирующих генетический аппарат клетки. Серьезное внимание на метаболизм макромолекул, а следовательно — на регуляцию памяти оказывают нейропептиды.