Выбрать главу

Всем известно имя Вильгельма Рентгена – немецкого физика, открывшего в 1895 году новый вид лучей, которые он назвал “икс-лучами”. Этим названием он постарался передать их тогда еще загадочную природу и за свое случайное открытие удостоился Нобелевской премии. А когда, экспериментируя с новооткрытыми лучами, он сфотографировал руку своей жены и на снимке отчетливо увидел каждую косточку, то сразу понял, что новая технология пригодится для медицинских нужд.

Вскоре рентгеновское излучение стало использоваться и для изучения ископаемых: например, с помощью рентгена изучали остатки неандертальцев из Крапины в Хорватии, а также гейдельбергскую челюсть, найденную в Германии. В течение XX века палеоантропологи активно использовали рентгенографию, однако выяснилось, что на обычных рентгеновских снимках изображения различных структур часто накладываются и заслоняют друг друга; кроме того, не всегда можно правильно оценить их размер из-за теней, искажающих пропорции.

Вскоре после открытия Рентгена итальянский радиолог Алессандро Валлебона предложил новый способ рентгеновской съемки с точным послойным фокусом, который получил название томографии (от греческих корней τομή – “сечение” и γράφω – “пишу”). В медицине этот метод нашел множество применений, а в начале 1970-х британец Годфри Хаунсфилд и американец Аллан Кормак независимо друг от друга разработали метод компьютерной томографии, за что оба в 1979 году были удостоены Нобелевской премии. КТ-сканер посылает к объекту сканирования сразу несколько лучей под разными углами, при этом измеряется сравнительное ослабление излучения при прохождении через объект, а затем на основе этих данных строится двумерное изображение слоя или трехмерное изображение целого объекта. То есть фактически на компьютерных КТ-изображениях показывается плотность ткани или материала, через который проходит рентгеновский луч. Так, проходя через воздушную пазуху, луч не ослабляется, давая сильный сигнал, а если он идет сквозь зуб или окаменевшую кость, сигнал получается слабее. Более того, поскольку КТ имеет возможность хорошей фокусировки, на изображениях видны различные детали объектов, не заметные на традиционных рентгеновских снимках. Методом КТ можно изучать даже микроструктуру костей и зубов.

По мере совершенствования технологии компьютерной томографии и соответствующего программного обеспечения расширяется круг ее использования в работах по эволюции человека. К примеру, уже в 1980-е годы в первых исследованиях с применением КТ удалось показать анатомию внутреннего уха у яванских питекантропов Homo erectus, до того не известную. Увы, качество изображений было весьма посредственным, и трудно было на их основе понять закономерности эволюции органа. Но прошло еще десять лет, и палеоантрополог Фред Спур взялся за изучение внутреннего уха у неандертальцев; нашлось несколько неандертальских черепов, у которых с помощью КТ удалось разглядеть тончайшие детали косточек внутреннего уха. И тогда впервые было продемонстрировано, что эти косточки по форме совсем не похожи на свои аналоги у людей современного типа.

Анатомически наше ухо делится на три части – наружное, среднее и внутреннее ухо. Наружное ухо собирает и передает звуковые волны через отверстие барабанной кости в среднее ухо, где в микроконструкции сцепленных косточек звуковые волны преобразуются в механическую вибрацию. Эти слуховые косточки среднего уха – молоточек, наковальня и стремечко – иногда сохраняются в окаменелых черепах, их находят где-то рядом со слуховым каналом. В отдельных случаях их можно увидеть и изучить даже без помощи КТ. Из этих редких находок мы знаем, что, к примеру, у испанских ранних неандертальцев из Атапуэрки косточки среднего уха сформированы так же, как у нас, вполне по-современному. То есть передача звукового сигнала шла по сходному пути: звук с помощью косточек среднего уха преобразуется в вибрацию, которая через жидкость и мембраны улитки передается во внутреннее ухо, где превращается в нервные импульсы, которые в конечном итоге отправляются в мозг. Именно так мы слышим звук.