Прошло еще 40 лет, и американец Дж. Ф. Лутц, критически рассмотрев разработанные за это время некоторые общие положения физики почв, с горечью писал: «Эти общие положения недостаточно обоснованы опытными данными, которые с определенностью установили бы непосредственную связь между физическими свойствами почвы и развитием растений. „Хорошие“ для развития растений физические условия почвы легко распознаются, но до настоящего времени, к сожалению, они не получили достаточно точного математического и физического выражения. Не существует какой-либо обобщенной величины или группы величин, при помощи которой можно было бы выражать желательные оптимальные условия почвы».
Между первым и последним высказываниями — расстояние более 160 лет. Физика почв скоро отпразднует свой 200-летний юбилей. Юбиляр вполне почтенен. За его плечами много тысяч крупных и мелких исследовательских работ, сотни тысяч опытов и измерений, километры почвенных разрезов и… как видим, печальные признания несостоятельности. Правда, не все настроены так пессимистично, как Лутц. Да и 200 лет — не возраст для науки, тем более что почвенная физика начала развиваться практически лишь с конца XIX столетия, после работ Докучаева и Костычева.
Эти крупнейшие русские ученые доказали, что химический состав почвы — лишь то, что она может дать, а ее физические свойства — то, что она дает реально. Мало иметь запасы питания, надо еще суметь их реализовать. В любой почве содержится достаточно пищи, плодородна — далеко не всякая.
Физические свойства почвы определяют ее отношение к внешней среде — воде, воздуху, теплу и свету, а через них — и к растению, конечно. Русское почвоведение выросло прежде всего в борьбе с засухой. Наиболее богатым почвам России — черноземам — всегда не хватало влаги. Вероятно, это обстоятельство и определило различие интересов русской и западноевропейской наук — для старых, выпаханных почв Германии, Англии и Франции главной проблемой было удобрение. Отсюда — агрохимия Либиха. В России же больше думали об обработке земли. Отсюда пристальный интерес к механике и физике почв; отсюда докучаевское почвоведение.
Итак, физические свойства…
Поглотительная способность почвы. Растение, как отмечалось выше, пьет питательные бульоны. Оно достаточно привередливо и к качеству последних относится как истый гурман. «Жирного» растение не любит: раствор должен иметь не более 2–3 граммов солей на 1 литр. Правда, когда бульон становится слишком уж слабым, растение начинает голодать (кто же будет сыт от чистой воды?). Однако и слишком концентрированное питание приводит к объявлению голодовки. В том и в другом случае исход один — растение умирает от истощения.
Итак, по агрохимикам, слишком увлекающимся минеральными снадобьями, нанесен первый удар. Оказывается, мало — плохо, но и много — тоже нехорошо. Следовательно, надо думать не об избытке пищи, а о регулировании количества воды.
К счастью, сами физические особенности почвы делают ее в определенной степени регулятором крепости раствора. Когда последний становится слишком крепким, частицы земли поглощают часть растворенных веществ. Напротив, при избытке влаги эти вещества отдаются назад. Эта автоматическая система работает уже многие миллионы лет, и растения к ней основательно привыкли. Привычка же, как известно, вторая натура.
Главную роль в описываемой системе играют мелкие глинистые частицы и перегной. Именно они-то и определяют способность почвы поглощать из водного раствора и связывать некоторые вещества и соли. Поэтому глинистые почвы, богатые перегноем, более плодородны, чем бедные гумусом песчаные. Они способны накапливать полезные вещества, которые немедленно возвращают растению, чуть только упадет концентрация раствора.
Мы уже говорили, что если вода растворяет питательные вещества, то воздух готовит их: окисляет продукты. Жизненное пространство для воды и воздуха в почве — это узкие коридоры, пустоты между твердыми частицами. Они определяют порозность или скважность земли, измеряемую отношением объема пустот к общему объему. Небезразлично здесь все — и количество, и размеры, и форма пустот. Последние могут иметь ширину от нескольких сантиметров (трещин) до тысячной миллиметра.