Выбрать главу

Иллюстрация из книги «Сад наслаждений» Гэррады Ландсбергской, посвященная семи свободным искусствам. «Сад наслаждений» был написан в образовательных целях в конце XII века.

БОЭЦИЙ (480–524)

Аниций Манлий Торкват Северин Боэций был христианским философом из знатной семьи, к которой принадлежали несколько императоров. Наиболее известной его работой является De Consolatione Philosophiae («Утешение философией»»), написанная во время тюремного заключения. Боэций рассуждает о неравенстве в мире, следуя за Платоном. Он перевел множество греческих трудов на латынь, чтобы сделать греко-латинскую культуру доступной будущим поколениям. Крах западной Римской империи наступил за четыре года до его рождения, когда последний император Ромул Август был смещен Одоакром, предводителем германского племени.

Многие переводы Боэция были не дословными и содержали многочисленные комментарии. Так, De Institutione Arithmeticae Libri II, которая задумывалась как перевод «Введения в арифметику»» Никомаха Герасского, изобилует материалом, принадлежащим самому Боэцию. Переводы Боэция широко использовались в средневековой Европе.

Боэций в заключении. Миниатюра из «Утешения философией», издание XIV века.

* * *

Со временем были вновь обретены более сложные труды греческих авторов, и в математике стал преобладать средневековый стиль. К сожалению, с уходом от греческого наследия исчезла и сама игра. Уже Лейбниц, великие открытия которого основывались на достижениях средневековой математики, лишь слышал о ней, но ее правила были ему неизвестны.

В математике Боэция числа могут быть равными (aequalis) или неравными (inaequalis). Равенство нельзя разделить на категории, так как это понятие неделимо. Однако можно классифицировать различные виды неравенства. К первой категории (maioris) относились случаи, когда некое число было больше данного, ко второй (minoris) — случаи, когда некое число было меньше данного. Эти категории делились на пять подкатегорий в зависимости от типа отношения между числами. Первая категория содержала кратные (multiplex), сверхчастичные (superparticularis), сверхчастные (superpartiens), кратно-сверхчастные (multiplex superparticularis) и кратно-сверхчастичные (multiplex superpartiens) числа. Вторая категория делилась на подкратные (submultiplex), подсверхчастичные (subsuperparticularis), подсверхчастные (subsuperpartiens), подкратно-сверхчастные (submultiplex superparticularis) и подкратно-сверхчастичные (submultiplex superpartiens).

Как можно убедиться, игра, подобная ритмомахии, значительно помогала прояснить систему Боэция. Для этого позднеримского автора кратным числом было такое, в котором первое число укладывалось n раз. Таким образом, вводились двойные, тройные, четверные числа и так далее. Например, 8 — четверное число для 2.

Число называлось сверхчастичным, если содержало другое число и его часть. Например, 9 — сверхчастичное число для 6, так как 9 = 6 + (1/2)·6. Сверхчастное число содержит другое число и несколько его частей. Например, 9 — сверхчастное для 7, так как 9 = 7 + (2/7)·7. Кратно-сверхчастичные числа содержат другое число несколько раз и одну его часть, кратно-сверхчастные содержат другое число несколько раз и несколько его частей. Например, 15 — кратно-сверхчастичное для 6, так как оно равняется 6 + 6 + (1/2)·6, а 16 — кратно-сверхчастное для 7, так как равняется 7 + 7 + (2/7)·7.

Боэций в своей книге также определял три типа средних величин. Первая из них — среднее арифметическое, определяемое как m = (а + Ь)/2. Его основное свойство заключается в том, что интервалы между ним и данными числами одинаковы. Вторая — среднее геометрическое, определяемое как m = √(а·b). Его основное свойство заключается в том, что а относится к m точно так же, как относится к Ь. Иными словами, а/m = m/b. Третья средняя величина — среднее гармоническое: m = 1/((1/а + 1/Ь)/2), или, что аналогично, m = 2аЬ/(а + Ь).

Как ритмомахия помогала разобраться в этом нагромождении отношений между числами? Очевидно, путем их использования в увлекательной игре. Игра велась на доске шириной 8 и длиной 16 клеток (длина доски могла отличаться). Каждому игроку выдавались 24 фишки с числами, которые были кратными, сверхчастными и сверхчастичными для данных чисел. Игроки использовали математические операции, чтобы снимать с доски фишки противника. Например, если фишка с номером 4 располагалась в 9 клетках от фишки с номером 36, то фишка с номером 36 оказывалась взятой (так как 36 = 4·9). Если фишки с номерами 4 и 8 располагались по бокам от фишки с номером 12, последняя оказывалась взятой (так как 12 = 4 + 8).