Выбрать главу

Кроме того, в условиях окончания игры фигурировали три средние величины, введенные Боэцием. Например, если одному из игроков удавалось расположить подряд фишки с номерами 2, 4, 6, при этом между ними располагалась фишка противника, это означало конец партии. Почему? Потому что 4 — среднее арифметическое 2 и 6.

* * *

СРЕДНИЕ ВЕЛИЧИНЫ В АРИФМЕТИКЕ БОЭЦИЯ

«Древним было хорошо известно, что существуют три средние величины: арифметическая, геометрическая и гармоническая. Они же рассматривались в науке Пифагора, Платона и Аристотеля.

<…> Назовем величину средней арифметической, когда разности между тремя членами или любым другим их числом одинаковы. <…> Теперь объясним среднюю геометрическую, которую лучше было бы назвать средней пропорциональной, так как в ней рассматриваются пропорции.

Поскольку здесь всегда рассматриваются равные пропорции… например 1, 2, 4, 8, 16, 32, 64, или тройная пропорция 1, 3, 9, 27, 81, равно как можно установить четверное, пятерное или любое другое отношение. <…> Среди других средних гармоническая не строится ни с помощью разностей, ни с помощью равных пропорций. Вместо этого средняя гармоническая есть та, в которой составляется наибольшее с наименьшим (частное) и сравнивается (или приравнивается) разность наибольшего со средним и разница среднего с наименьшим. Например, 4, 5, 6 или 2, 3, 6. 6 превосходит 4 на свою третью часть (то есть на 2), 4 превосходит 3 на свою четвертую часть (на 1), 6 превосходит 3 на свою половину (на 3), 3 превосходит 2 на свою третью часть (на единицу)».

* * *

Гравюра 1554 года, на которой изображена доска для ритмомахии.

* * *

ОБНОВЛЕННЫЕ ОПРЕДЕЛЕНИЯ БОЭЦИЯ

Определения, данные Боэцием среднему арифметическому, среднему геометрическому и среднему гармоническому, можно выразить в современной нотации. Рассмотрим три величины: а, b и с. Предположим, что а — наибольшая величина, b — средняя, с — меньшая, то есть выполняется неравенство а > b > с. Можно предположить, что b — среднее арифметическое, среднее геометрическое или среднее гармоническое двух других величин. Среднее арифметическое обладает следующим свойством: разность между соседними членами неизменна, то есть аЬ = Ьс. Это выполняется в случае, когда Ь = (а + с)/2, что нетрудно вывести из предыдущего равенства.

Среднее геометрическое обладает следующим свойством: соотношение соседних членов неизменно, то есть а/= Ь/с. Это равенство подразумевает, что ас = bb, следовательно, b = √(а·с).

Среднее гармоническое, согласно Боэцию, обладает следующим свойством: соотношение между наибольшей и наименьшей величиной равно соотношению разности большей и средней величины и разности средней и меньшей величины. На языке математики это определение выглядит так: а/с = (аb)/(bс). Из этого равенства можно получить следующее равенство: а(Ьс) = с(аЬ), откуда следует abас = сасЬ, или, что аналогично, ab + сЬ = 2ас. Выразим из последнего равенства и получим b = 2ас/(ас). Эта формула позволяет получить среднее гармоническое а и с, хотя чаще используется следующее выражение: = 2/(1/а +1/с). Это выражение можно получить из предыдущего делением числителя и знаменателя на ас.

* * *

Раймунд Луллий

В своем труде Ars Magna et Ultima («Великое искусство») Раймунд Луллий представил свою логическую систему доказательства истинности. Целью ее создания было объективно доказать мусульманам превосходство христианской религии. Иными словами, он создал логику для доказательства своих рассуждений. Одним из его открытий являются так называемые круги: на этих кругах были записаны понятия, при вращении кругов образовывались различные комбинации, то есть высказывания, которые Луллий считал истинными.