α = arctg(1/5) = (1/5) — ((1/5)3)/3 + ((1/5)5)/5 — ((1/5)7)/7 +…
На основе арктангенса угла (4α — π/4) он составил ряд, позволяющий вычислить число π, в котором используется функция, обратная котангенсу. В отличие от предыдущих, этот ряд сходился быстрее. С его помощью этому английскому математику удалось верно вычислить 100 знаков числа π. Этот ряд соответствовал следующему выражению:
π/4 = 4·arctg(1/5) — arctg(1/239).
Это выражение можно представить в виде следующего ряда:
Леонард Эйлер также внес вклад в исследование рядов, позволяющих вычислить число π. С помощью одной из своих формул ему удалось вычислить 20 знаков π менее чем за полчаса.
* * *
ЛЕОНАРД ЭЙЛЕР (1707–1783)
Швейцарский математик и физик Леонард Эйлер прожил большую часть жизни в России и Германии. Он считается ведущим математиком XVIII века и одним из крупнейших математиков всех времен. Он совершил важнейшие открытия в области анализа бесконечно малых и теории графов, а также ввел множество терминов и обозначений современной математики, особенно в области анализа, в частности обозначение функции. Он также совершил важные открытия в механике, гидродинамике, оптике и астрономии. Он был невероятно плодовитым ученым: полное собрание его сочинений насчитывает от 60 до 80 томов.
ЗНАК π
Обозначение числа к греческой буквой пи ввел Леонард Эйлер в своей книге «Введение в анализ бесконечных», изданной в 1748 году. Он использовал первую букву греческого слова periphereia — «окружность». Эйлер ввел и другие популярные обозначения, которые используются в современной математике. Он стал обозначать основание натурального логарифма буквой е, квадратный корень из минус единицы — буквой i, сумму ряда — знаком Σ, конечную разность — знаком Δ.
Логика
В XVIII веке не было совершено значимых открытий в логике, однако нет никаких сомнений, что Кант, который хоть не внес прямого вклада в эту дисциплину, тем не менее способствовал ее дальнейшему развитию. По сути, на основе идей Канта позднее сформировался логический позитивизм, а также аналитическая философия. Позднее Фреге, Гильберт, Рассел и Гёдель внесли огромный вклад в логику.
Немецкий философ Иммануил Кант (1724–1804) заложил фундамент трех основных свойств современной логики: различие между понятием и объектом, первенство высказывания как основной единицы логического анализа и понятие логики как средства изучения структуры логических систем, а не только подтверждения отдельных умозаключений.
Иммануил Кант, преподававший логику и метафизику в университете родного Кёнигсберга, является одним из величайших мыслителей в истории философии. Его работы охватывают множество разнообразных дисциплин, в частности право и эстетику. Особую важность имеют его труды по логике.
* * *
РАЗЛИЧИЕ МЕЖДУ ПОНЯТИЕМ И ОБЪЕКТОМ
Готлоб Фреге (1848–1925) установил, что любое предложение или высказывание содержит выражение, обозначающее объект, и предикат, обозначающий понятие. Например, в высказывании «Сократ является философом», «Сократ» — это объект, понятие «являться философом» — предикат. Эта точка зрения существенно отличалась от принятой ранее, согласно которой высказывание рассматривалось как два термина, соединенных глаголом «являться». Новый взгляд на отношение «понятие — объект» стало основным для понимания теории множеств и отношения принадлежности элемента ко множеству.
Первым коммерчески успешным калькулятором был арифмометр, созданный французом Шарлем Ксавье Тома де Кольмаром (1785–1870). Он успешно продавался не только во Франции, но и в других странах. Конкуренты не дремали, и через несколько лет было создано несколько альтернативных моделей. Наиболее заметными были калькулятор «Арифморель» еще одного француза Тимолеона Мореля (1842), калькулятор с зубчатыми колесами, созданный американцем Фрэнком Болдуином (1872), который независимо от него также был разработан шведом Вильгодтом Однером (1874), жившим в Санкт-Петербурге, а также круговой калькулятор англичанина Джозефа Эдмондсона (1885). Все эти машины использовались даже в первые годы XX века.