Выбрать главу
Число π в XX веке

Развитие аппаратного обеспечения в течение XX века позволило вычислить τ с более высокой точностью. В настоящее время известно более триллиона знаков этого числа. Последний результат содержит почти 2,7 триллиона знаков после запятой, то есть 2,7·1012 знаков[1].

До появления компьютеров наилучших результатов добился англичанин Д. Фергюсон, который исключительно с помощью калькулятора вычислил свыше тысячи знаков: 620 знаков в 1946 году, 808 — в 1947-м, 1120 — в 1949-м (совместно с Джоном Ренчем).

Джон Ренч в том же году впервые в истории вычислил приближенное значение τ с помощью компьютера. По инициативе Джона фон Неймана расчеты производились на компьютере ENIAC. Спустя 70 часов вычислений было получено 2037 знаков Я. Пять лет спустя, в 1954 году, Николсон и Джинель превзошли этот результат, вычислив 3092 знака Я всего за 13 минут с помощью IBM NORC — самого мощного компьютера того времени. В 1959 году, опять же спустя пять лет, на IBM 704, первом массовом компьютере, где была реализована арифметика с плавающей запятой, за 4,3 часа было вычислено 16167 знаков. Расчеты произвел Франсуа Женюи в Париже. Вскоре пал рубеж в 100000 знаков: его преодолели Дэниел Шенке и Джон Ренч в 1961 году с помощью нового компьютера IBM 7090, в котором вместо электронных ламп использовались транзисторы, что позволило в шесть раз увеличить скорость расчетов по сравнению с его предшественниками. 100265 знаков были вычислены за 8,7 часа.

Джин Гийу в 1966 году установил новый рекорд, вычислив 250 000 знаков за 41 час 55 минут. Он же в 1967 году получил 500 000 знаков за 28 часов 10 минут.

Впечатляющий показатель в миллион знаков был достигнут усилиями Джина Гийу и Мартина Буйе в 1973 году. Они использовали компьютер CDC 7600 компании Control Data Corporation — конкурента IBM на рынке компьютеров второго поколения (в них использовались транзисторы), которые выпускались в 1960-е. За 23 часа 18 минут было вычислено 1001250 знаков 71.

В 1980-е главную роль играли японцы Ясумаса Канада и Казунори Миёши: в 1981 году им удалось преодолеть отметку в 2 миллиона знаков за 137 часов, в 1982-м — 8 миллионов за 6 часов 52 минуты, в 1983-м — 16 миллионов менее чем за 30 часов, в 1987-м на японском компьютере NEC SX-2 им удалось вычислить 100 миллионов знаков за 35 часов 15 минут. В 1989 году Григорий Чудновский, который считается одним из лучших среди ныне живущих математиков, и его брат Давид вычислили свыше миллиарда знаков 71 на компьютере IBM 3090.

Отметку в триллион знаков преодолел Ясумаса Канада и возглавляемая им группа, которая использовала компьютер HITACHI SR8000/MPP. Этот рекорд был установлен в Токио в декабре 2002 года. Для вычисления 1241100000000 знаков потребовалось 600 часов, то есть 25 суток вычислений, что соответствует скорости 574583 знака в секунду. В апреле 2009 года японец Дайсуке Такахаши из университета Цукуба вычислил более 2 триллионов знаков за 29,09 часа. Нынешний рекорд, который составляет почти 2,7 триллиона знаков[2], удерживает французский программист Фабрис Беллар, который использовал обычный персональный компьютер под управлением операционной системы Linux. На выполнение расчетов ему потребовался 131 день.

Большинство этих результатов были получены благодаря открытиям удивительного и загадочного индийского математика Сринивасы Рамануджана (1887–1920). Один из полученных им рядов, опубликованный в 1914 году, дает 8 новых знаков π на каждый член ряда. Этот ряд записывается так:

На основе результатов, полученных Рамануджаном, были найдены ряды, которые сходятся еще быстрее и позволяют получить несколько верных знаков числа π для каждого члена ряда. Братья Джонатан и Питер Борвейн, канадцы шотландского происхождения, открыли ряд, каждый член которого дает 31 новый знак π.

Остальные результаты, среди которых выделяются достижения Ясумасы Канады, получены с помощью формулы Карла Фридриха Гаусса (1777–1855), в которой устанавливается связь между числом π и средним арифметико-геометрическим. Формула Гаусса записывается следующим образом:

В этой формуле MAG (а, Ь) — это среднее арифметико-геометрическое чисел а и Ь.

Равенства, недавно полученные Дэвидом Бэйли, Питером Борвейном и Саймоном Плуффом, представляют собой наиболее интересные выражения, связанные с числом π. В 1997 году эти исследователи опубликовали ряд формул, которые позволяют вычислить любой знак двоичной записи π без необходимости вычислять предшествующие ему знаки. Эти же формулы, очевидно, можно использовать для расчета знаков π в любой системе счисления по основанию, кратному двум, в частности в шестнадцатеричной системе счисления. Авторы подтвердили корректность своего метода, вычислив миллионный, 10-миллионный, 100-миллионный, миллиардный и 10-миллиардный знаки шестнадцатеричной записи π. В результате были получены следующие шестнадцатеричные числа.

вернуться

1

На момент написания книги (2010).

вернуться

2

Данные на 31.12.2009 года. 19 октября 2011 года Александр Йи и Сигэру Кондо вычислили 10 триллионов знаков после запятой.