Можно заметить, что число 17 рассматривается как сумма степеней двойки, а те, в свою очередь, умножаются на 53. Так, разложение числа 17 выглядит следующим образом: 17 = 20 + 24. При сложении в качестве слагаемых выбираются значения (20 + 24)·53, остальные произведения, 21·53, 22·53 и 23·53, не используются, так как не входят в разложение числа 17. Этот алгоритм аналогичен тому, что используется в компьютерах. Результат этого алгоритма верен, поскольку представить любое число в виде суммы степеней двойки можно единственным образом. Следовательно, в нашем примере существует единственное множество значений, сумма которых равна 17. Поэтому значения из правого столбца таблицы, которые мы складываем, также можно выбрать только одним способом. Этот метод умножения известен под названием египетского умножения.
Деление выполнялось как операция, обратная умножению. В качестве примера приведем те же числа. Попробуем разделить 901 на 17. Результат должен равняться 53. Результатом деления является целое число без знаков после запятой.
В качестве исходных берется знаменатель 17 и 1. Далее аналогично прошлому примеру оба эти числа удваиваются. Результатом будет 34 и 2. Далее это действие повторяется, результат будет равен 68 и 4. Эти действия повторяются до тех пор, пока первое значение не станет больше числителя, который в нашем примере равен 901. Когда первое значение становится больше числителя (901), полученная пара чисел игнорируется. Результат алгоритма приведен ниже.
Следующая пара чисел — 1088 и 64 — отбрасывается, так как первое число больше 901. Далее нужно подобрать такие числа из первого столбца, чтобы их сумма равнялась 901. В нашем примере это 544, 272, 68 и 17 (так как 544 + 272 + 68 + 17 = 901). Сумма соответствующих им чисел из правого столбца и будет результатом деления. Результат равен 32 + 16 + 4 + 1 = 53.
Как и в случае с умножением, разложение числа 901 является единственным. Мы представили 901 как сумму степеней двойки, умноженных на 17, при этом сумма этих степеней двойки равна 53. Результатом деления в этом случае является целое число. В случаях когда это невозможно и результат содержит несколько знаков после запятой, в этом алгоритме учитываются дроби. Однако алгоритм работы с дробями, который использовали египтяне, был намного сложнее современного. За некоторыми исключениями, рассматривались только дроби вида 1/n, то есть дроби, числитель которых равен 1. Любопытно, что причиной этому было ограничение, вызванное способом записи дроби: сначала записывался символ для обозначения дроби, затем — символы, соответствующие числу в знаменателе. Информация о числителе не записывалась, поэтому он мог равняться только единице.
Для обозначения дроби египтяне использовали этот символ:
Рядом с ним записывался знаменатель, в нашем примере это 21:
Так египтяне записывали дробь 1/21.
Мы упомянули, что существовали дроби с числителем, отличным от 1. Речь идет о дроби 2/3, которая обозначалась отдельным символом, и о дроби вида n/(n + 1), обратной дроби (1 + 1/n). Иными словами, 1/(1 + 1/n) = 1/((n + 1)/n) = n/(n + 1).
Важность дробей и действий с ними четко прослеживается в папирусе Ахмеса, который начинается с представления дроби 2/n в виде суммы 1/x + 1/y + … + 1/z для всех нечетных n от 5 до 101. Далее приводятся аналогичные представления для дробей вида n/10 при n от 2 до 9.
* * *
ПАПИРУС АХМЕСА
В этом знаменитом египетском папирусе длиной 6 метров приводится 87 разнообразных задач с решениями. Он был написан в период с 2000 по 1800 год до н. э. Его автор Ахмес указывает, что он воспроизводит знания, насчитывающие более двух сотен лет, необходимые для будущих писцов. Таким образом, папирус Ахмса можно считать примитивным учебником по математике. В настоящее время папирус хранится в Британском музее, куда он поступил из коллекции Генри Райнда в 1858 году. (По имени владельца его еще называют папирусом Райнда.) В нем также объясняются действия с дробями.
* * *
Папирус Ахмеса содержит информацию о выполнении действий с дробями, а также позволяет получить представление о типичных задачах, которые решали египтяне, и о способах их решения. Первые задачи папируса Ахмеса — это задачи о делении чисел на 10. При их решении использовалась уже упомянутая таблица чисел вида п/10. Далее приводятся некоторые задачи из арифметики и геометрии, а также задачи, которые можно решить с помощью линейных уравнений вида ах + Ьх = с. Некоторые из задач папируса Ахмеса содержат неизвестные, возведенные в квадрат (в современной нотации), однако, несмотря на это, считается, что египтяне не умели решать уравнения второй и третьей степени.