Выбрать главу

Химия известных нам живых систем основана на одном главном элементе — углероде.

Проясним кое-какие термины. Любая совокупность атомов и молекул в химии (и в биологии) называется веществом. Вещества могут быть простыми (состоящими из одного элемента) или сложными (состоящими из разных элементов). Сложное вещество, в котором атомы разных элементов соединены между собой химическими связями, называется соединением. Любое соединение, как правило, имеет постоянный состав, который можно описать простой формулой, указывающей число атомов каждого элемента в его молекуле. Например, молекула воды состоит из двух атомов водорода (H) и одного атома кислорода (O). Соответственно, формула воды — H2O.

Однако сейчас нас интересуют соединения углерода (C). Они настолько разнообразны, что их изучением занимается целая область химии — органическая химия. Поначалу, в XIX веке, органической химией назвали химию веществ, образующихся в растительных и животных организмах и получаемых из них. Постепенно стало понятно, что в состав почти всех этих веществ входит углерод. В итоге органической химией стали называть химию любых более-менее сложных соединений углерода, безотносительно к тому, есть они в живых телах или нет. Сокращенно такие соединения принято называть просто «органическими веществами». Многие из них действительно имеют какое-то отношение к живым (или мертвым) организмам, но далеко не все. Химический состав организмов — предмет отдельной науки, которая называется биохимией.

Углерод — шестой по счету элемент таблицы Менделеева. Это означает, что его атом содержит шесть протонов (Z=6). Чистый углерод известен нам в виде алмаза, графита или угля. А валентность углерода в органических соединениях всегда равна 4. Это — важнейший факт, без знания которого понять устройство живых организмов просто невозможно.

Кроме того, углерод имеет три химические особенности, отчасти объясняющие, почему органических соединений так много. Во-первых, атом углерода способен образовывать устойчивую ковалентную связь почти с любым другим элементом менделеевской таблицы; далеко не про каждый атом можно такое сказать. Во-вторых, атомы углерода отлично образуют ковалентные связи друг с другом, создавая в результате длинные цепочки (в том числе ветвящиеся), кольца и другие сложные структуры. И в-третьих, ковалентная связь «углерод — углерод» легко может стать кратной, то есть двойной или тройной. К связям углерода с некоторыми другими элементами это тоже относится. Склонность углерода к образованию кратных связей очень важна и в органической химии, и в биохимии.

Углеводороды

Самое простое на свете органическое соединение называется метаном. Молекула метана состоит из одного атома углерода и четырех атомов водорода, соединенных с углеродом ковалентными связями. На языке химических символов это выглядит так: один углерод (C) и четыре водорода (H) образуют молекулу CH4 (формула метана). В более подробной формуле — графической — каждую ковалентную связь обозначают чертой, проводимой в данном случае между символами C и H.

Химические соединения, состоящие только из углерода и водорода, вполне логично называются углеводородами (см. рис. 1.4). Метан — это самый простой возможный углеводород. Примеры углеводородов, следующих за ним по сложности: этан (C2H6), пропан (C3H8), бутан (C4H10), пентан (C5H12), гексан (C6H14). Основу любой из этих молекул образует цепочка атомов углерода, соединенных между собой ковалентными связями. А все валентности, свободные от углерод-углеродных связей, там занимают атомы водорода. Зная эти принципы, нарисовать структуру углеводорода с любым заданным числом углеродных атомов можно очень легко. На графических формулах видно, что несколько знакомых нам теперь углеводородов — этан, пропан, бутан, пентан и гексан — отличаются друг от друга только числом совершенно одинаковых групп −CH2–.

Цепочки атомов углерода, соединенных ковалентными связями, образуют основу не только углеводородов, но и многих других органических веществ. Длина этих цепочек ничем не ограничена, в них вполне могут входить десятки, сотни, а иногда и тысячи атомов. Кроме того, углеродные цепочки не обязательно линейны. Они могут ветвиться, а могут и замыкаться в кольца.

Но и это еще не все. Бывают такие углеводороды, где некоторые углерод-углеродные связи в цепочке — двойные или тройные, то есть образованы двумя или тремя парами электронов. Напомним, что валентность углерода в органических молекулах всегда равна четырем. Поэтому атом углерода, участвующий в образовании двойной связи, может присоединить на один атом водорода меньше, а при тройной связи — на два атома водорода меньше по сравнению с атомом углерода, все связи которого одинарные. Разумеется, это отражается в формулах веществ. Простейший углеводород с двойной связью — этилен (C2H4), один из относительно немногих углеводородов, всерьез интересующих физиологов: он служит гормоном у растений. Простейший углеводород с тройной связью — ацетилен (C2H2). На современной Земле биохимическое значение ацетилена не слишком велико, зато он распространен в космосе и считается одним из самых вероятных участников добиологического синтеза, приведшего когда-то к возникновению жизни[13]. Это довольно активное вещество, которое прекрасно горит и может поэтому использоваться для освещения. В старину ацетиленовые фары умудрялись ставить даже на велосипеды. Взрыв такой велосипедной фары стал ярким воспоминанием героев повести Джерома Джерома «Трое на велосипедах» (продолжения знаменитой «Трое в одной лодке»): «…мы тихо-мирно ехали по Уитби-роуд, беседовали о Тридцатилетней войне, и вдруг твоя фара взорвалась, как будто из ружья пальнули. От неожиданности я свалился в канаву. Никогда не забуду лица миссис Гаррис, когда я говорил ей, что ничего страшного не произошло, волноваться не следует — тебя уже несут на носилках, а врач с сестрой будут с минуты на минуту…»[14] Сейчас ацетиленовые светильники используются редко. Дольше всего они продержались на отдаленных маяках, куда было трудно провести электричество.

вернуться

13

Bracher P. J. Origin of life: Primordial soup that cooks itself // Nature Chemistry, 2015, V. 7, № 4, 273–274.

вернуться

14

Пер. А. Попова.