Наибольший объем работ по векторизации топокарт приходится на оцифровку рельефа и гидрографии. Первое место прочно удерживают горизонтали. Их удобно оцифровывать в автоматическом режиме — горизонталями является большинство объектов коричневого цвета. А вот при оцифровке гидрографии выяснится, что синим цветом на карте обозначено слишком много объектов. Так что для векторизации рек, ручьев и т. д. удобнее использовать трассировку. Но и горизонтали, и ручьи, и границы озер и рек желательно получить в виде полилиний и замкнутых полилиний, поэтому окончательный набор объектов для конверсии выглядит так, как это показано на рис. 5.
Вывод из опыта работы: если необходимо оцифровать одни только объекты гидрографии (например, для строительного проектирования, оформления земельных отводов крупных объектов), то использование трассировки по цветному растру повышает производительность в 2–2,5 раза. Применение автоматической векторизации при полной оцифровке листа карты ускоряет работу в 4–5 раз. Не сочтите это рекламой, но я искренне восхищен возможностями программы Spotlight Pro! Впрочем, вернемся к процессу оцифровки.
Выполнив бинаризацию оттенков коричневого цвета, получаем внедренный растр, при осмотре которого можно заметить, что он требует некоторого редактирования. В областях с большой плотностью горизонталей происходит слияние растровых линий (рис. 6), и программа вряд ли сможет самостоятельно разобраться в этой мешанине.
Справиться с ситуацией помогает инструмент . Несколько движений мышью — и внедренный растр приобретает осмысленный вид (рис. 7).
В ситуациях, подобных той, что приведена на рис. 8, используется инструмент .
Поскольку после векторизации потребуется время на редактирование векторной линии, проще привести растр к виду, представленному на рис. 9. По окончании редактирования растра достаточно будет выполнить операцию заливки дырок, и такие объекты будут распознаваться как одна непрерывная полилиния.
Итак, весь процесс оцифровки листа карты сводится к следующим процедурам:
• бинаризация рельефа (оттенки коричневого цвета);
• преобразование растра в векторы;
• редактирование полученных векторов (расслоение, задание уровней и атрибутов, объединение разрозненных полилиний и т. п.);
• трассировка объектов гидрографии;
• оцифровка оставшихся объектов вручную (консервативно настроенным пользователям AutoCAD рекомендую проделать эту часть работы в любимой программе: нажмите Сохранить как… и выберите формат DWG).
Экспорт
Экспорт полученных данных из Spotlight Pro в AutoCAD не представляет никакой сложности, а вот об экспорте в Mapinfo следует поговорить подробнее. По результатам экспорта Spotlight создает два файла с одинаковым именем и с расширениями MIF и MID. MIF-файл — это база данных, где собрана информация о типах векторных объектов и координатах их узловых точек (графическая информация). МID-файл — база табличных данных, характеризующих соответствующий графический объект (имя слоя, атрибут, уровень, тип и цвет линии и т. д.). Наличие MID-файла не обязательно, но содержащаяся в нем информация пригодится для дальнейшей работы в Mapinfo.
В заголовке MIF-файла прописывается система координат «План-схема» («NonEarth») и указываются единицы измерения, которые мы выбрали при создании системы координат (рис. 10).
Импорт в Mapinfo будет корректным, если исправить предложение CoordSys, указав необходимую проекцию и единицы измерения[2]. Что касается примера, приведенного на рис. 10, координаты объектов получены для 4-й зоны проекции Гаусса-Крюгера (осевой меридиан — 21 градус, начальная широта — 0 градусов, масштабный множитель — 1, смещение осевого меридиана по оси у — 4 500 000 м) в метрах.
Исправленный заголовок MIF-файла показан на рис. 11.
2
См. приложение J к руководству пользователя Mapinfo Professionaclass="underline" «Формат обмена данными», раздел «Предложение CoordSys (Координатная система)».