Выбрать главу

Уран, как и другие элементы имеет несколько изотопов, которые в различной степени способны к делению под действием нейтронов. Оказывается, что наиболее способным к нейтронному делению ядер является изотоп урана с массовым числом 235. При распаде ядра атома изотопа урана-235 возникают осколки (атомы элементов с массовым числом меньшим, чем уран) и 2–3 нейтрона, которые, попадая в ядра соседних, еще не распавшихся атомов урана, вызывают такое же деление. Благодаря многократному повторению этих быстро протекающих процессов распад атомов лавинообразно нарастает (цепная реакция), и выделяется то огромное количество энергии, которую и принято именовать атомной, а явление — атомным взрывом. На применении цепной реакции урана или плутония и основан принцип действия атомной бомбы. Одна из первых бомб была изготовлена из урана-235. В природной смеси изотопов урана-235 всего 0,715 %, т. е. на каждый килограмм природного урана приходится 7,15 г урана-235.

Поэтому для осуществления ядерной реакции необходимо было найти способы получения или разделения изотопов, или обогащения смеси их ураном-235.

Такое разделение изотопов можно было осуществить, используя шестифтористый уран с температурой кипения 55,7 °C способом газовой диффузии. Этот способ основан на более быстрой способности шестифтористого урана-235 проникать через пористый фильтр в сравнении с тем же соединением, но содержащим уран-238 (обычный, не «горючий»).

Разделение изотопов урана методом термодиффузии связано с устройством многих тысяч перегородок, насосов, холодильников. Поэтому только пусковой период этого «деликатнейшего» технологического процесса составляет 80–100 дней.

Уран — мягкий, серебристо-белый металл, в два с половиной раза тяжелее железа, более чем в полтора раза тяжелее свинца. Этот химически активный элемент образует много соединений, легко реагирует со многими неметаллами, дает сплавы и соединения с ртутью, оловом, медью, свинцом, алюминием, висмутом, железом и другими металлами.

Можно сказать, что в настоящее время уран является одним из наиболее полно изученных элементов периодической системы.

Для металлического урана известно несколько кристаллических модификаций, переход которых сопровождается резкими объемными изменениями. Первый такой переход происходит при 660 °C. Поэтому в атомных реакторах на урановом «горючем» нельзя допускать более высокую температуру.

Уже при 100 °C вода немедленно разлагает уран с образованием окислов и гидридов, а при 700 °C компактный уран загорается. Поэтому урановые стержни покрывают алюминием. Из-за большой химической активности (сродство к азоту, кислороду, углероду) получение металлического урана сопряжено с большими трудностями, тем более что уран нельзя получить электролизом или очистить возгонкой.

Читая книги, в которых отражена история изучения урана, нетрудно заметить, как быстро «понижалась» его температура плавления. В 1925 г. указывалось, что температура плавления урана выше 1850 °C, в 1932 г, она уже «точно» определялась в 1850 °C, в 1935 г. — в 1400°, а в 1956 г. большинство авторов единодушно утверждает, что она равна 1133 °C. Такое «снижение» температуры плавления урана объясняется исключительно совершенствованием техники очистки и получения «чистого» урана. Чем чище стали получать уран, тем все ниже оказывалась его температура плавления.

Внимание этому элементу в свое время уделял Д. И. Менделеев, доказавший, что атомный вес урана равен 240, а не 120, как утверждали предшественники и современники Д. И. Менделеева.

Общее содержание урана в земной коре составляет, по данным разных авторов, от двух до четырех десятитысячных долей процента, что в переводе на язык весовых единиц равняется миллиардам тонн! Достаточно указать, что урана больше, чем ртути, кадмия, серебра…

И если за 40 лет с начала XX в. было добыто всего 7500 т урана, то со времен второй мировой войны его добыча резко возросла. Правда, уран не встречается в виде мощных месторождений, но зато известно большое число минералов, содержащих уран: карнотит, отенит, уранинит, торбернит, тюямупит (Африка, Австралия, СССР). Богатейшие залежи урановой смоляной руды находятся в Чехословакии. В малых количествах уран находится в углях, нефти, морской и грунтовой воде и даже в граните.