В любом случае в методе неизбежно рассматривается актуальная бесконечность, для чего в современном анализе выполняется переход к пределу. Если бы древние греки применили этот подход при решении этой и других схожих задач, то добились бы потрясающих результатов.
Кеплер был одним из первых математиков Возрождения, который занялся вычислением объемов, причем не совсем в обычных обстоятельствах: впервые он обратил внимание на эту задачу в тот самый день, когда сочетался вторым браком с Сюзанной Рейтингер (его первая жена скончалась годом ранее). Это был брак по расчету, так как Кеплер искал женщину, которая позаботилась бы о нем и его детях и вела быдомашнее хозяйство. Сюзанна, должно быть, понимала, насколько необычным характером отличался ее будущий муж, поскольку она не удивилась, когда он покинул свадебное торжество, чтобы подробно изучить, как трактирщик измеряет объем вина в бочках. Бочки не имели строго цилиндрическую форму, и объем измерялся с помощью мерного стержня, который опускался в них через отверстие в крышке.
Определив таким образом уровень вина в бочке, трактирщик узнавал, сколько его осталось. Результатом размышлений Кеплера стал вышедший в 1615 году трактат под названием «Новая стереометрия винных бочек». Для решения задачи Кеплер использовал метод неделимых, разработанный Архимедом. Можно сказать, что из задачи об объеме бочки вина впоследствии родился анализ бесконечно малых. Тем не менее следует отметить, что труды Кеплера в этой области носили скорее практический, чем теоретический характер, и в этом смысле их можно считать отчасти неполными. Например, для вычисления площади круга он рассматривал сумму площадей бесконечного числа треугольников, вершины которых совпадали с центром круга, а основания располагались на окружности. Аналогично для вычисления объема сферы он рассчитывал сумму объемов конусов, вершины которых совпадали с центром сферы, а основания находились на ее поверхности. С помощью этого метода Кеплер пришел к выводу, что объем сферы равен одной трети произведения ее радиуса на площадь поверхности. Корректность всех этих операций Кеплер обосновывал принципом непрерывности, который при использовании его метода вычисления объемов следовало принять за истину.
* * *
БОЧКИ КЕПЛЕРА
Задача о бочках, рассмотренная Кеплером, принадлежит к классическим задачам, решаемым с помощью интегрального исчисления. Общим случаем этой задачи является вычисление объема жидкости, заключенной в сосуде определенной формы. Когда цистерна с бензином приезжает на автозаправку, оператор обычно опускает в нее длинный металлический стержень для измерения уровня жидкости в емкости. Очевидно, что отметки на этом стержне должны быть нанесены в зависимости от формы цистерны. Как правило, она имеет форму цилиндра, основания которого являются полусферами или параболоидами вращения. В некоторых аэропортах можно встретить цистерны такой же формы с керосином.
* * *
Галилео Галилей (1564–1642) совершил революцию во многих областях науки. Мы не будем рассказывать ни о его творчестве, ни о том, какое влияние оно оказало на науку в целом, — рассмотрим вкратце его размышления о бесконечности.
Во-первых, Галилей рассматривал движение как процесс, происходящий без пауз, то есть делал выбор в пользу непрерывного, а не дискретного, зная, что занимает рискованную позицию, так как это автоматически означало принятие перехода от потенциальной к актуальной бесконечности. Для этого задачи, связанные с движением, следует рассматривать с геометрической точки зрения. Графическое изображение движения с переменной скоростью может выглядеть, например, следующим образом.
Портрет Галилео Галилея кисти фламандского художника Юстуса Сустерманса (1636) и график, описывающий свободное падение тел.
На горизонтальной оси откладывается время, на вертикальной — скорость. Неравномерное движение описывается, например, уравнением v = 2t. Это означает, что с течением времени скорость возрастает: по прошествии одной секунды она равна 2, по прошествии двух секунд — 4 и т. д. Если в треугольнике АВС сторона АВ представляет пройденное время, сторона ВС — скорость, то пройденный путь будет равняться площади треугольника АВС. Галилея интересовало применение этого метода к более сложным разновидностям движения, например по параболической траектории, при этом неизбежно требовалось рассматривать кривые линии и площади фигур, ограниченных ими. В своих расчетах он использовал методы, схожие с методами Кеплера. Однако, как вы увидите чуть позже, его ученик Кавальери первым сформулировал рациональный метод для вычисления площадей подобных фигур.