Выбрать главу

Метод флюксий изложен во французском издании книги Ньютона, вышедшем в 1740 году.

Лейбниц

Первые математические труды Готфрида Лейбница (1646–1716) были посвящены комбинаторике. В них уже проявилась гениальность ученого, однако они были устаревшими и имели определенные черты, характерные для средневековой науки, которой в немецких университетах той эпохи уделялось большое внимание. В 1672 году Лейбниц отправился в Париж с важной дипломатической миссией. Именно тогда основным родом его занятий стала математика — отчасти это произошло под влиянием Христиана Гюйгенса, который познакомил Лейбница с последними математическими открытиями.

В этот период Лейбниц пишет первые работы, посвященные суммам бесконечных рядов. Одним из наиболее примечательных результатов стал полученный им и названный в его честь ряд, в котором устанавливается неожиданная связь между числом π и нечетными числами:

Несомненно, важнейшими работами Лейбница стали его труды по анализу бесконечно малых, положившие начало важнейшему разделу математики — математическому анализу. Неоценимую роль сыграли верно выбранные обозначения. Так, с помощью знаков d и  введенных им для обозначения дифференциала и интеграла, стало возможным объединить множество разрозненных и неоднозначных математических понятий. Лейбниц не всегда действовал внимательно и аккуратно, из-за чего многие его результаты были ошибочными, сравнивал себя с тигром, который «позволяет уйти добыче, которую не смог схватить в первый, второй и третий прыжок».

Прыжком Лейбница был переход от дискретного к непрерывному. Комбинаторика, которой он владел в совершенстве, — это дискретный мир, но мир функций и кривых является не дискретным, а непрерывным, и именно при переходе от одного к другому проявился математический гений и смелость Лейбница, так как он смог преобразовать неделимые Кавальери в новую математическую сущность — бесконечно малые, для чего создал особые алгоритмы. Рассмотрим ключевой элемент созданного Лейбницем анализа бесконечно малых, изложенный в упрощенном виде на языке современной математики.

* * *

СПОСОБНОСТИ К ЯЗЫКАМ

Лейбниц был сыном известного юриста и в шесть лет остался сиротой. Учился он самостоятельно и все силы отдал изучению латыни, так как именно на ней было написано большинство книг в библиотеке, оставшейся от отца. В десять лет Лейбниц уже читал классические труды на латыни и греческом, а в 13 — писал гекзаметром на латыни. Подобными выдающимися способностями к языкам отличается большинство известных математиков.

* * *

Нам известно, что прямая определяется двумя точками, но она также может определяться одной точкой и углом наклона. Например, прямые r1 и r2, проходящие через начало координат, определяются углами наклона α и β соответственно. Мы говорим об угле наклона не только применительно к математическому анализу, но и в повседневной жизни, например когда речь идет об угле наклона на участке автомагистрали.

* * *

ОСНОВЫ МЕЖДУНАРОДНОГО ПРАВА

В 15 лет Лейбниц начал изучать право в Лейпцигском университете. Несмотря на то что большую часть времени он уделял изучению философии, через пять лет Лейбниц получил право на степень доктора юриспруденции, которую ему отказались присвоить ввиду юного возраста студента. После этого он перевелся в Альдорфский университет в Нюрнберге, где защитил позднее ставшую знаменитой диссертацию об историческом характере законодательства, в которой заложил основы международного права.

* * *

С помощью транспортира можно узнать конкретную величину угла, например 24°. Другой способ измерить угол состоит в определении его тангенса. В прямоугольном треугольнике АВС тангенсом угла называется отношение длины противолежащего катета к прилежащему.

Будем обозначать тангенс буквами tg: tg(α) = АВ/СВ.