Выбрать главу

Храм братства Розы и Креста, рисунок из книги Теофилуса Швейгхардта Константиенса, 1618 год.

* * *

Бесконечно малые величины не были с восторгом приняты математиками той эпохи. Характеристический треугольник использовался в рассуждениях, но так и не получил строгого определения. Он лишь представлял нечто происходящее в загадочном и непонятном мире бесконечно малых, и его использование предполагало принятие актуальной бесконечности, как бы ученые ни стремились этого избежать.

Кроме того, следовало каким-то образом уйти от архимедовского принципа сравнения величин, и Паскаль, Лопиталь, Бернулли и сам Лейбниц в итоге стали рассматривать бесконечно малые как особые величины, которые в определенных условиях равняются нулю. Лейбниц неспроста дал своей работе название «О скрытой геометрии и анализе неделимых и бесконечных величин».

Эпсилон

Когда говорят об эпсилонах или о языке эпсилон-дельта, речь идет вовсе не о секретных кодах Министерства обороны, а о сложном математическом аппарате, который напрямую связан с понятием предела. Первое определение понятию предела сформулировал Бернард Больцано (1781–1848), не получивший, к сожалению, при жизни должного признания. Первым, кто использовал это понятие на практике, был Огюстен Луи Коши (1789–1857), однако окончательное строгое определение предела дал Карл Вейерштрасс. Определение предела на языке эпсилон-дельта является чрезвычайно точным в той части, которая касается делимости на бесконечное множество частей. Хотя это определение очень сложно понять тому, кто не владеет некоторыми математическими знаниями, оно тем не менее долгое время использовалось в учебниках для средней школы. Мы не хотим сказать, что старшеклассники недостаточно умны, чтобы понять его, но не стоит ожидать, что все поймут его с одинаковой легкостью. Во многих учебниках оно приводится мелким шрифтом, и преподаватели обходят его молчанием.

Карл Вейерштрасс на литографии 1895 года. Этот немецкий математик был первым, кто использовал на практике язык эпсилон-дельта.

* * *

СПОРЫ ГЕНИЕВ

Переписка, несомненно, является древнейшей формой общения между учеными. С ее помощью формулируется и решается множество задач. По сравнению с другими формами общения письма обладают преимуществом — конфиденциальностью: они адресуются конкретному человеку или группе людей. В виде переписки проходили многие научные дискуссии. Одной из самых известных стало жаркое противостояние между Ньютоном и Лейбницем об авторстве математического анализа. Абсолютно независимо друг от друга они получили аналогичные результаты, однако Ньютон опубликовал свои работы первым, что дало ему основания обвинить Лейбница в плагиате. Это привело к ожесточенному и абсурдному спору, не имевшему аналогов в истории науки.

* * *

Попробуем сделать понятие предела более ясным, несколько упростив его.

По сути оно имеет много общего с понятием накопления. Представим, что перед входом в помещение образовалась очередь. Можно заметить, что люди постепенно становятся ближе ко входу и друг к другу. Это совершенно естественно: изначально, когда в очереди немного людей, они стараются сохранять комфортное расстояние между собой, но по мере того как число людей растет, расстояние между ними уменьшается. Интересно, что мы говорим о двух разных расстояниях, которые, однако, тесно связаны между собой: о расстоянии между началом очереди и входом и о расстоянии между людьми в очереди, которое по мере того как мы приближаемся к концу, увеличивается. Это логично, так как те, кто становится в очередь, стараются сохранять комфортное расстояние между собой, но по мере того как очередь движется вперед, люди чувствуют давление тех, кто находится позади. Можно сказать, что люди скапливаются у входа.

Можно определить степень скопления людей с помощью параметра, который будет описывать, например, изменение расстояния между людьми в очереди по мере приближения к ее началу. Как правило, этот параметр будет постепенно уменьшаться.