Выбрать главу

В этом случае парадокс, сформулированный Галилеем (см. главу 3), — это уже не парадокс, а констатация факта: множество натуральных чисел является бесконечным.

Путем аналогичных рассуждений можно доказать, что множество натуральных чисел  и множество целых чисел  имеют одинаковую кардинальность. Чтобы подтвердить это, достаточно установить взаимно однозначное соответствие между ними, сопоставив всем положительным числам четные, а всем отрицательным — нечетные. Таким образом, существует столько же целых чисел, сколько натуральных.

Счетные множества

Кантор также сформулировал очень важное понятие счетного множества. По определению, множество А называется счетным, если можно установить взаимно однозначное соответствие между А и подмножеством . В основе этого определения лежит очень простая идея, которую мы часто используем в повседневной жизни.

Когда мы заявляем, что места в зале кинотеатра пронумерованы, мы говорим о взаимно однозначном соответствии между подмножеством натуральных чисел и множеством кресел и сопоставляем каждому креслу число.

Мы уже показали, что множество целых чисел является счетным. Далее Кантор получил поистине удивительный результат: множество рациональных чисел  также является счетным. Он доказал, что существует столько же рациональных чисел, сколько и натуральных. Чтобы установить соответствие между натуральными и рациональными числами, Кантор использовал настолько простую схему, что остается только удивляться, почему никто не сделал этого раньше. Возможно, причина в том, что никто не считал это возможным, так как это противоречит элементарной интуиции.

Схема, придуманная Кантором, такова. Нужно построить таблицу рациональных чисел (напомним, что речь идет о дробях) следующим образом: в первой строке записываются дроби, числитель которых равен 1, во второй — дроби, числитель которых равен 2, в третьей — 3 и т. д. Вычеркнем из каждой строки повторяющиеся дроби. Например, 2/2 — это то же самое, что 1/1 или 3/3, 2/4 — то же, что и 1/2, и т. д. Построив таблицу, обойдем все числа в порядке, указанном стрелками, начиная с 1/1. Мы обойдем все рациональные числа ровно один раз. Таким образом, взаимно однозначное соответствие между натуральными и рациональными числами устанавливается следующим образом:

1 —> 1/1

2 —> 1/2

3 —> 2/1

4 —> 3/1

5 —> 1/3

Самое удивительное в том, что мы установили взаимно однозначное соответствие между двумя множествами, одно из которых является дискретным (множество натуральных чисел), а другое — плотным (множество рациональных чисел). Здесь бесконечность начинает понемногу приподнимать завесу тайны над своими удивительными загадками. Интуиция подсказывает, что счетными могут быть только дискретные множества, и тот факт, что плотное множество  также является счетным, был поистине удивительным. Мы подсознательно ассоциируем счетность с возможностью найти следующий элемент для данного, что невозможно в плотном множестве. Если мы рассмотрим предыдущую таблицу, то увидим, что 1/1 является первым числом, а следующим будет 1/2. Однако множество дробных чисел является плотным, поэтому между 1/1 и 1/2 находится бесконечное множество чисел. Так, нам известно, что 1/4 находится между 1 и 1/2, а в нашем перечне это число занимает шестое место.

По этой причине с открытым Кантором понятием счетности оказалось тесно связано понятие непрерывности. Неизбежно возник вопрос: если расширить множество рациональных чисел иррациональными, будет ли полученное множество счетным?

Иными словами, можно ли говорить, что М — счетное множество?

Нет, это не так, и Кантор это доказал с помощью метода, схожего с тем, который он использовал при доказательстве счетности множества , но намного более сложного. Также, используя метод доведения до абсурда, он показал, что множество (0, 1) всех вещественных чисел, заключенных между 0 и 1, не является счетным, следовательно, М также не может быть счетным. Таким образом Кантор создал серьезный прецедент, сыгравший определяющую роль в математике XX века. Достаточно сказать, что этот прецедент стал частью доказательства знаменитой теоремы Геделя о неполноте.

* * *

МЫСЛИТЬ — ЭТО БОЛЬШЕ, ЧЕМ ГОВОРИТЬ

Согласно теории множеств Кантора, множество всех возможных слов, как произнесенных, так и записанных на бумаге, является счетным. Если учитывать, что множество знаков (букв, символов и т. д.) в языке конечно, то очевидно, что на его основе можно сформировать счетное множество. Другое дело — множество вещей, о которых мы можем подумать. Оно, очевидно, не является счетным. Мы можем представить, например, множество окружностей на плоскости, имеющее мощность континуум. Таким образом, все, что мы можем сказать, поддается упорядочению, а все, о чем мы можем подумать, не поддается или поддается лишь частично. Следовательно, можно упорядочить лишь часть наших мыслей, а большинство из них принадлежит к миру хаоса.