Выбрать главу

И вновь доказал, что число точек, содержащихся в кубе, также равно !

«Я вижу это, но я в это не верю», — писал Кантор Дедекинду в 1877 году, пытаясь объяснить эти взаимно однозначные соответствия между фигурами, имеющими разное число измерений. Кантор доказал положение, противоречащее любым интуитивным и математическим представлениям о размерности: все одномерные, двумерные и трехмерные объекты, с которыми он работал, содержали одно и то же число точек, равное .

Это было невероятно, и этот результат означал, что на любом, сколь угодно малом, отрезке содержится столько же точек, сколько во всей известной Вселенной. Внутри бесконечно малого оказалось заключено нечто бесконечно большое.

В действительности дело этим не ограничивается:  также равно числу точек в произвольном гиперпространстве. Иными словами, если бы мы могли проникать в пространства высших измерений (четырех-, пятимерные пространства и т. д.),  означало бы число точек, содержащихся в этих пространствах.

Трансцендентные числа

Вы увидели, что множества  (натуральных чисел),  (целых чисел) и  (рациональных чисел) содержат одинаковое число элементов (то есть являются равномощными) — бесконечное число, обозначенное Кантором как . Множество вещественных чисел получается, если расширить множество рациональных чисел иррациональными. Возникает вопрос: существует ли столько иррациональных чисел, чтобы общее количество вещественных чисел равнялось ? Ответ на этот вопрос достаточно любопытен и не лишен таинственности. Однако чтобы понять его, сначала следует узнать о так называемых трансцендентных числах.

Уравнение одной переменной х степени п с рациональными коэффициентами — это равенство вида

Cnxn + Cn — 1xn — 1 +… + C1x + C0 = 0

Тому, кто не знаком с подобными выражениями, оно может показаться сложным, но это не так. В этом контексте уравнение — не более чем равенство, в левой части которого записаны слагаемые с неизвестным х, возведенным в некоторую степень и умноженным на некие числа (коэффициенты), а в правой части записан ноль. Решить уравнение означает найти такое значение х, при котором уравнение обращается в верное равенство. Например, в уравнении

х — 2 = 0

коэффициенты равны 1 и —2, а решением является х = 2.

Иррациональное число, например √2, является результатом решения уравнения вида

х2 — 2 = 0.

По определению, число х является алгебраическим, если оно выступает корнем (решением) алгебраического уравнения с целыми коэффициентами. Проясним некоторые понятия, чтобы сделать это определение более понятным. Алгебраическое уравнение представляет собой многочлен, приравненный к нулю, например

Зх2 + 5х — 1 = 0,

где 3, 5 и —1 — коэффициенты. Выражение

√3х5 - 5х2 = 0

также является уравнением, но его первый коэффициент не является целым числом, следовательно, это уравнение нельзя назвать алгебраическим.

Число 3 является алгебраическим, так как оно выступает решением уравнения

х — 3 = 0.

Очевидно, что любое рациональное число является алгебраическим, так как всегда можно записать алгебраическое уравнение, решением которого будет это число.

Как мы уже показали, √2 является решением уравнения х2 — 2 = 0, и, следовательно, это также алгебраическое число.

Если число не является алгебраическим, его называют трансцендентным. Этот термин, введенный Эйлером, происходит от латинского transcendere — «превосходить» и означает, что вычисление таких чисел в некотором роде выходит за рамки привычных математических операций. Доказать трансцендентность числа порой очень и очень непросто. Французский математик Жозеф Лиувилль (1809–1882) доказал существование трансцендентных чисел и открыл метод, позволяющий получить некоторые из них. Первым числом, которое удостоилось чести быть помещенным в список трансцендентных, стало L (число Лиувилля), определение которого слишком сложно, чтобы приводить его здесь. Записывается оно следующим образом: