«Математика в своем развитии совершенно свободна и связана только одним условием: ее понятия должны быть непротиворечивы и согласованы с уже имеющимися понятиями посредством четких определений. Сущность математики — свобода».
Кантор предпочитал использовать понятие «свободная математика» вместо более общего «чистая математика».
Он умер в одиночестве в больнице, но его имя никогда не будет забыто. Лучшая эпитафия Кантору, несомненно, принадлежит Гильберту, который сказал: «Никто не может изгнать нас из рая, который Кантор создал для нас».
* * *
МНОЖЕСТВА И НАЦИЗМ
Математическое сообщество решило отдать дань уважения труду Кантора, для чего к его 70-летнему юбилею были организованы торжества, однако Первая мировая война помешала реализовать эти планы. Тогда группа немецких математиков собралась в его доме, чтобы вручить ученому в знак признания мраморный бюст, который в настоящее время хранится в Университете Галле. В период правления Гитлера этот бюст был убран, так как теория множеств считалась «еврейской математикой».
* * *
До появления современной физики бесконечность упоминалась только в философских и богословских дискуссиях. В математике она присутствовала, можно сказать, естественным образом, так как, по словам Кронекера, «нам дана свыше» бесконечная последовательность натуральных чисел. Различия между актуальной и потенциальной бесконечностью затронули и геометрию, в которой использовалось понятие бесконечной прямой. Однако полноправным элементом математики бесконечность стала только с появлением математического анализа, анализа бесконечно малых. Как говорил Гильберт, «математический анализ можно в известном смысле назвать единой симфонией бесконечного».
Однако частью нашей повседневной реальности бесконечность стала лишь благодаря открытиям в физике и астрономии. До начала XX века астрономы считали, что Вселенная включает Солнце, планеты и далекие звезды. Спустя некоторое время они открыли, что Солнечная система — часть галактики, состоящей из нескольких миллионов солнечных систем. Постепенно пространство стало считаться достаточно большим, чтобы вместить несколько миллиардов галактик. Но почему на этом следовало остановиться? Кто сказал, что в космосе не будут обнаружены новые структуры большего размера, что позволит считать, что размеры Вселенной намного больше? Бесконечна ли Вселенная? Ответ на этот вопрос до сих пор не найден и, возможно, не будет найден никогда.
С другой стороны, чем больше ученые изучают субатомные частицы, тем более важную роль в физике начинают играть бесконечно малые величины. Атом как таковой перестал быть неделимым, каким его считали древние греки, и стал подобен Солнечной системе в миниатюре. Однако физики не остановились на этом: были открыты частицы, содержащиеся внутри атомного ядра, и их размеры составляют менее 10–15 метра. Пока что можно вести речь о невообразимо малых, но не бесконечно малых величинах. Тем не менее в одной из физических теорий, которую оказалось труднее всего подтвердить экспериментально, а именно в квантовой электродинамике, изучаются элементарные частицы, в частности электроны и кварки, которые с точки зрения математики рассматриваются как точки, следовательно, они подобны точкам вещественной прямой и ведут себя похожим образом.
Возможно, ученые когда-нибудь докажут, что в природе не существует и никогда не существовало различий между потенциальной и актуальной бесконечностью и что противоречие между ними лишь мнимое.
Приложение
Первое известное доказательство иррациональности квадратного корня из 2 принадлежит философу-досократику, представителю пифагорейской школы Гиппасу из Метапонта (род. ок. 500 г. до н. э.), который, создав это доказательство, не только проявил способности к математике, но и затронул тему, табуированную в его среде. Не будем забывать о легенде, согласно которой за всякое упоминание о существовании иррациональных чисел пифагорейцы карали смертью.
Как и в большинстве подобных доказательств, включая и приводимое в некоторых неканонических изданиях «Начал» Евклида, в доказательстве Гиппаса используется метод доведения до абсурда. На современном языке его доказательство звучит следующим образом.