Выбрать главу

Озона в атмосфере очень мало. Если можно было бы собрать весь атмосферный озон в один слой у поверхности Земли, то его толщина оказалась бы равной всего трем миллиметрам. Но, несмотря на это, он служит чудесной газовой броней, защищающей все живое — растения, животных, человека — от ультрафиолетовых солнечных лучей. Благодаря ему до Земли доходит та их часть, которая не только не вредна, но даже полезна человеку.

О том, что Солнце, источник жизни, посылает в пространство и ультрафиолетовые лучи, могущие погубить жизнь, знали уже давно. Но вот проявлена пленка. На снимке — солнечные спектры, сфотографированные с ракеты на разных высотах. Чем выше был сделан снимок, тем длиннее их ультрафиолетовая часть. У самой Земли спектр как бы «обрезан». Это озоновый слой задерживает часть ультрафиолетового излучения.

Каким же он был там, до путешествия сквозь атмосферу, солнечный луч, пришелец из мирового пространства?

И об этом принесли вести с больших высот приборы, поднятые на ракетах.

Из чего состоит воздух на больших высотах? Атмосферу составляют разные газы, тяжелые и легкие. Не естественно ли думать, что они выстраиваются по рангу: тяжелые — ближе к Земле, легкие — дальше от нее. Атмосфера слоиста — так считали одно время.

Пробы, взятые при подъемах стратостатов и шаров-зондов, поколебали такое мнение. С величайшей осторожностью доставлялись на Землю драгоценные кубические сантиметры воздуха стратосферы. Анализ говорил одно и то же: состав воздуха всюду почти одинаков — кислород, азот, редкие газы.

А что делается выше сорока километров, каков воздух там? Самое простое доставить пробу оттуда. Но на чем?

Помогла опять ракета, поднявшись на недосягаемые ранее высоты.

Лучи на Землю посылает не только Солнце.

Внимание человека давно уже привлекли таинственные лучи, приходящие из космоса. Охотники за ними побывали глубоко под землей и высоко над нею.

Многое уже удалось узнать о лучах, идущих к нам из глубины вселенной. Но, как и солнечные, они доходят к нам сквозь атмосферу, претерпевая в ней различные превращения, так что мы имеем дело лишь с отдаленными потомками «настоящих» космических лучей. Чтобы узнать их, познакомиться с подлинно космическими лучами, приборы надо поднять еще выше, не на десяток-другой, а на сотню и больше километров.

И счетчик космических частиц совершил путешествие на ракете на высоту, не доступную ни стратостатам, ни шарам-зондам, туда, где плотность воздуха в миллион раз меньше, чем у поверхности Земли.

Плотность воздуха в миллион раз меньше, чем у поверхности Земли! Но ведь и об этом мы до недавнего времени знали лишь из теоретических расчетов да наблюдений за метеорами, сгорающими в воздушной броне планеты, за полярными сияниями, сумеречным светом, серебристыми облаками, плавающими очень высоко над Землей.

Астрономы заметили, что вспышки на Солнце, за полтораста миллионов километров от нас, отражаются на состоянии атмосферы Земли, на погоде. Но механизм таких воздействий еще не ясен. Крайне важно было бы раскрыть и эту загадку.

Ракеты, поднимая приборы туда, где солнечные лучи встречаются с воздушной оболочкой Земли, помогают узнать истину и в дальнейшем дадут возможность совершенствовать методы прогнозов погоды.

На больших высотах имеются слои заряженных частиц — электронов и ионов. Отсюда и название этой области: «ионосфера». Об ионосфере нам очень важно знать как можно больше — она броня для радиоволн, от нее зависит дальняя радиосвязь, в том числе и при космическом полете. Ее изучают с Земли, наблюдая за отражением посланных локатором радиоволн. Но только ракета, забравшись в ионосферу, позволила точнее узнать, как распределяются заряженные частицы в атмосфере и каковы они. Сейчас благодаря ракетным полетам мы гораздо лучше представляем себе то, что происходит на высотах почти в 500 километров — почти на половине высоты всей воздушной оболочки Земли!

А разве не интересно географу посмотреть, как выглядит наша планета с огромной высоты? У нас есть превосходные снимки Луны. Телескоп приблизил лунную поверхность, и на фотографиях так отчетливо видны все подробности рельефа, как если бы мы наблюдали его из окна ракеты, с высоты всего нескольких сотен километров. Стратостаты привозили нам фото Земли с высоты двух десятков километров. На этих снимках Земля плоская, и надо подняться гораздо выше, чтобы убедиться в том, что наша планета — шар, что мы жители земного шара. Фотоаппарат на ракете сделал снимки земной поверхности с высоты двухсот и более километров. Сквозь вуаль атмосферы видна Земля, как на крупномасштабной рельефной карте. И ясно видно, что перед нами кусочек поверхности шара.

Поставлены были и другие интереснейшие опыты в «стране загадок», как можно справедливо назвать верхнюю атмосферу.

Давно известно о свечении ночного неба. Солнце зашло, но полной темноты нет. И в этом не повинны звезды, не только благодаря им светится небо. Предполагали, что виновник свечения — кислород. На большой высоте солнечные лучи расщепляют кислородные молекулы на атомы, а потом начинается обратный процесс, при котором выделяются свет и тепло. Но так ли это на самом деле? Окись азота ускоряет переход кислорода из атомарного в молекулярный. Ее и послали в баллоне на ракете в верхние слои атмосферы. Как только газ был выпущен из баллона, яркая вспышка озарила небосвод. Небо светилось несколько часов. Опыт, поставленный в самой атмосфере, дал ожидаемый результат.

Удалось с помощью ракеты искусственно вызвать и другое явление — метеорит. В головку ее поместили связку гранат. Взрыв — и осколки с огромной скоростью врезались в атмосферу. Наблюдая за ними с Земли, удается получать интересные данные для космической аэродинамики, которая изучает движение с большими скоростями в сильно разреженных газах.

Чтобы отмечать крошечные метеориты, множество которых носится в мировом пространстве и залетает в атмосферу Земли, в обшивке ракеты установили специальные приборы — своего рода ловушки мельчайших метеорных частиц. Стоит одной такой частичке удариться о нее — в приборе сейчас же возникают электроколебания, которые тем сильнее, чем сильнее удар. О граде этих ударов радио сообщает на Землю. Оказалось, что на некоторых высотах метеорный дождь особенно силен. Чтобы строить спутники и межпланетные корабли, знать это необходимо.

Так с появлением ракеты — нового разведчика больших высот — начался новый этап в изучении и покорении воздушной стихии и ближайших к нам областей мирового пространства.

Конечно, это все еще только начало. Трудности создания летающей лаборатории чрезвычайно велики.

Плавно поднимается вверх воздушный шар. Стратонавты могут регулировать скорость подъема, заставить стратостат остановиться, чтобы произвести наблюдения. На «потолке», в высшей точке подъема, они находятся час, полтора, два и больше. За это время многое можно успеть сделать.

Сложнее вести наблюдения с ракеты, которая мчится быстрее снаряда дальнобойного орудия, все ускоряя полет, пока работают двигатели. В распоряжении приборов считанные минуты полета. Они должны мгновенно отзываться на перемену условий. А ведь всякий измерительный прибор обладает инерцией, и его показания могут отставать, когда обстановка быстро меняется.

Приходится обходить эти трудности. Вместо одной величины, которую трудно прямо измерить, измеряют другую, связанную с нею определенной зависимостью. Так, например, известно, что скорость звука зависит от температуры среды. И вместо того чтобы измерять температуру, можно узнать, как изменяется скорость звука при полете ракеты на разных высотах. Зная это, нетрудно вычислить и температуру.

Инерцию приборов уменьшают, создавая для них все более чувствительные «органы чувств» — приемники измеряемых величин. Так используют полупроводники, реагирующие — и притом практически мгновенно — на изменение температуры в тысячные доли градуса. Ими уже можно пользоваться при полетах хотя бы и в пять-семь раз быстрее звука — с такими скоростями летают сейчас высотные ракеты.