Выбрать главу

Изучением этой проблемы занялись и другие исследователи. И вот что было установлено.

Разведка звуком

С физической точки зрения, всякий звук — это колебательные движения, распространяющиеся волнообразно в упругой среде. Звуки, издаваемые животными, возникают в результате колебания голосовых связок, натянутых, как своеобразные струны, в гортани животного.

Чем больше колебаний совершает в секунду тело (или упругая среда), тем выше частота звука. Самый низкий человеческий голос (бас) обладает частотой колебаний около 80 раз в секунду, или, как говорят физики, частота его колебаний достигает 80 герц. Самый высокий голос около 1400 герц.

В природе и технике известны звуки еще более высоких частот — в сотни тысяч и даже миллионы герц. Рекордно высокий звук у кварца — до одного миллиарда герц! Мощность звука колеблющейся в жидкости кварцевой пластинки в 40 тысяч раз превышает силу звука мотора самолета. Но мы не глохнем от этого «адского грохота» только потому, что не слышим его. Человеческое ухо воспринимает звуки с частотой колебаний лишь от 16 до 20 тысяч герц. Более высокочастотные акустические колебания принято называть ультразвуками — их волнами летучие мыши и «ощупывают» окрестности.

Ультразвуки возникают в гортани летучей мыши. Гортань по своему устройству напоминает обычный свисток. Выдыхаемый из легких воздух вихрем проносится через гортань — возникает «свист» очень высокой частоты, до 150 тысяч герц.

Летучая мышь может периодически задерживать поток воздуха. Затем он с огромной силой вырываемся наружу. Давление проносящегося через гортань воздуха вдвое больше, чем в паровом котле. Неплохое достижение для зверька весом в 5—20 граммов!

В гортани летучей мыши возбуждаются кратковременные высокочастотные звуковые колебания — ультразвуковые импульсы. В секунду следует от 5 до 60, а у некоторых видов даже от 10 до 200 импульсов. Каждый импульс-«взрыв» длится всего 2–5 тысячных долей секунды (у некоторых видов 5—10 сотых секунды).

Краткость звукового сигнала — очень важный физический фактор. Лишь благодаря ему возможна точная эхолокация, то есть ориентировка с помощью ультразвуков.

От препятствия, которое удалено на 17 метров, отраженный звук возвращается К зверьку приблизительно через одну десятую секунды. Если звуковой сигнал продлится больше десятой доли секунды, то его эхо, отраженное от предметов, расположенных ближе 17 метров, будет восприниматься органами слуха зверька одновременно с собственным звуком.

А ведь именно по промежутку времени между концом посылаемого сигнала и первыми звуками вернувшегося эта летучая мышь инстинктивно получает представление о расстоянии до предмета, отразившего ультразвук.

Поэтому звуковой импульс так краток.

Советский ученый Е. Я. Пумпер высказал в 1946 году очень интересное предположение, которое хорошо объясняет физиологическую природу эхолокации. Он считает, что летучая мышь каждый новый звук издает сразу же после того, как услышит эхо предыдущего сигнала. Таким образом, импульсы рефлекторно следуют друг за другом: раздражителем, вызывающим их, служит воспринимаемое ухом эхо. Чем ближе летучая мышь подлетает к препятствию, тем быстрее возвращается эхо, и, следовательно, тем чаще издает зверек новые эхолотирующие «крики». Наконец при непосредственном приближении к препятствию звуковые импульсы начинают следовать друг за другом с исключительной быстротой. Это сигнал опасности! Летучая мышь инстинктивна изменяет курс полета, уклоняясь от направления, откуда отраженные звуки приходят слишком быстро.

Эхолокатор летучих мышей — очень точный навигационный «прибор»: он в состоянии запеленговать даже микроскопически малый предмет диаметром в 0,1 миллиметра!

И только когда экспериментаторы уменьшили толщину проволоки, натянутой в помещении, где порхали летучие мыши, до 0,07 миллиметра, зверьки стали на нее натыкаться.

Летучие мыши наращивают темп эхолотирующих сигналов примерно за 2 метра от проволоки. Значит, за 2 метра они ее и «нащупывают» своими криками. Но летучая мышь не сразу меняет направление, летит и дальше прямо на препятствие и лишь в нескольких сантиметрах от него резким взмахом крыла отклоняется в сторону.

С помощью сонаров[3], которыми их наделила природа, летучие мыши не только ориентируются в пространстве, но и добывают корм.

Типы природных сонаров

вернуться

3

Сонар — изобретенный в конце 30-х годов подводный эхолокатора. Успешно применялся в последней войне для обнаружения неприятельских подводных лодок.