Учёные из Университета Мердока предложили отлавливать отдельных верблюдов, помещать на них GPS-маячки и вновь выпускать на волю.
Верблюды-одиночки со временем присоединяются к своим собратьев, так что по местоположению «шпионов» можно будет находить целые стада и уничтожать их. Методика получила название «техника Иуды».
* * *
Как известно, глобальный перенос пыли играет важную роль в функционировании экосистем нашей планеты. Особое значение в этом круговороте имеют пылевые облака, которые поднимаются над Сахарой и через Атлантический океан переносятся в Южную Америку.
Специалисты из Центра космических полетов Годдарда взяли пробы пыли в наземных станциях в Майами, на Барбадосе и во впадине Боделе в восточной части Сахары. Ранее на территории этой впадины существовали обширные озера, после которых остались залежи одноклеточных водорослей — они поднимаются в воздух вместе с пылью и насыщают ее фосфором. Расчеты показали, что каждый год амазонские леса получают около 22 тыс. тонн фосфора из Сахары.
НЕИЗВЕСТНОЕ ОБ ИЗВЕСТНОМ
История арифметики
Арифметика — раздел математики, изучающий числа, их свойства и отношения — является одной из основных математических наук. История арифметики охватывает период от возникновения счёта до формального определения чисел и арифметических операций над ними с помощью системы аксиом.
Когда и при каких обстоятельствах возникла арифметика, мы видимо никогда не узнаем из-за давности событий. Ведь даже животные умеют различать большее и меньшее количество точек на кормушке и идут именно к той, за которой прячется пища. А что уж говорить о людях…
Первые научные сведения об арифметических знаниях обнаружены в исторических памятниках Вавилона и Древнего Египта, относящихся к III–II тысячелетиям до н. э. Большой вклад в развитие арифметики внесли греческие математики, в частности пифагорейцы, которые пытались с помощью чисел определить все закономерности мира. Арифметика развивалась в Индии и странах ислама и только затем пришла в Европу.
Изначально основной областью применения арифметики была торговля. Лишь кXVII веку мореходная астрономия, механика, более сложные коммерческие расчёты поставили перед арифметикой новые запросы и дали толчок к дальнейшему развитию.
Ещё в доденежные первобытные времена, когда происходил натуральный обмен товарами между племенами, обмениваемые предметы раскладывались в два ряда, что позволяло устанавливать количественные соотношения между ними. Этот способ не требовал применения такого понятия как число.
В дальнейшем появились естественные эталоны счёта, например, пальцы рук. С появлением таких эталонов и связывают возникновение понятия числа. При этом число предметов сравнивали то с Луной в небе, то с количеством глаз, рук и т. п. Позднее многочисленные эталоны заменялись на один наиболее удобный, обычно им становились пальцы рук и/или ног. По поводу нашей десятеричной системы счисления, унаследованной от праиндоевропейских предков, французский математик Анри Леон Лебег заметил: «Возможно, что если бы люди имели одиннадцать пальцев, была бы принята одиннадцатиричная система счисления».
Но это было потом. Вначале первобытные люди для записи результатов счёта использовали зарубки на дереве или костях, узелки на верёвках и т. п. Одним из таких образцов является лучевая кость молодого волка с 55 зарубками на ней, которая была найдена в 1937 году около деревни Дольни-Вестонице (Чехия). Возраст находки составляет около 5 тысяч лет, долгое время она была старейшей известной записью числа в Европе.
В разных странах в разные времена арифметика шла разными путями, но в целом всё более совершенствуясь и приближаясь к современному виду.
Основные сведения по египетской математике базируются на папирусе Ахмеса, который является конспектом египетского писца Ахмеса (XVIII–XVII века до н. э.). Папирус Ахмеса включает условия и решения 84 задач и является наиболее полным египетским задачником, дошедшим до наших дней. Он был составлен для учебных целей и содержит задачи с решениями, вспомогательные таблицы и правила действий над целыми числами и дробями.
Из папируса мы узнаем, что египтяне пользовались десятичной системой счисления и использовали такие арифметические операции, как сложение, удвоение и дополнение дроби до единицы. Любое умножение на целое число и любое деление без остатка проводились с помощью многократного повторения операции удвоения, что приводило к громоздким вычислениям, в которых участвовали определённые члены последовательности 1, 2, 4, 8, 16…