Выбрать главу

Учёные полагают, что в Индии позиционная система впервые появилась не позже начала нашей эры. Однако в связи с тем, что индийцы использовали хрупкие материалы для письма, документальных памятников этого периода не сохранилось.

Для целых чисел в Индии использовалась десятичная система. Сначала это были цифры в письме кхароштхи, которые писались справа налево, а затем в письме брахми, которые писались слева направо.

Оба варианта использовали аддитивный принцип для чисел до 100 и мультипликативный — далее. Однако в брахми использовались специальные знаки для чисел от 1 до 9. На основе этой системы были разработаны современные цифры письма деванагари (или «божественного письма»), которые стали применяться в десятичной позиционной системе.

К 595 году относится первая запись числа, в которой применяются девять цифр, нуля ещё не было. Для удобства вычислений Ариабхата предложил записывать цифры знаками санскритского письма. В 662 году христианский епископ Сирии Север Себохт писал: «Я не стану касаться науки индийцев…их системы счисления, превосходящей все описания. Я хочу лишь сказать, что счёт производится с помощью девяти знаков».

Основными арифметическими действиями в Индии считались сложение, вычитание, умножение, деление, возведение в квадрат и куб, извлечение квадратных и кубических корней, для которых были разработаны правила. Вычисления проводились на счётной доске с песком или пылью или просто на земле и записывались палочкой. Промежуточные выкладки стирались, что приводило к невозможности проверки с помощью обратной операции, вместо чего использовалась проверка с помощью девятки.

Индийцы знали дроби и умели совершать операции над ними, пропорции, прогрессии. Уже с VII века н. э. они пользовались отрицательными числами, интерпретируя их как долг, а также иррациональными числами. Они занимались суммированием числовых рядов, в частности, примеры арифметических и геометрических прогрессий имеются в «Ведах», а в XVI веке Нараяна Пандит произвёл более общие суммирования Индийские математики Ариабхата, Брахмагупта и Бхаскара решали простые и даже квадратные уравнения, что было наивысшим достижением индийских математиков в области теории чисел.

Изображение цифр из индийской Вакхшалийской рукописи (XII век). Индийцы называли знак, обозначающий отсутствие какого-либо разряда в числе, словом «сунья», что значит пустой. Арабы перевели это слово по смыслу и получили слово «сифр».

Страны ислама

Сейчас нам может показаться странным, что страны ислама могли нести свет просвещения, но на самом деле именно так и было. Математические центры исламских стран сыграли большую роль в распространении знаний в Европу.

В IX–X веках научным исламским центром был Багдад, в котором работали ал-Хорезми, Хаббаш аль-Хасиб, ал-Фаргани, Сабит Ибн Курра, Ибрахим ибн Синан, ал-Баттани. Позднее возникли новые научные центры в Бухаре, Хорезме и Каире, в которых работали Ибн Сина, аль-Бируни и Абу Камил ал-Мисри, а затем в Исфахане и Мераге, где работали Омар Хайям и Насир ад-Дин ат-Туси. В XV веке новый научный центр был образован в Самарканде, в нём работал Гияс ад-Дин ал-Каши.

В начале IX века Мухаммед ибн-Муса ал-Хорезми написал книгу «Об индийском счёте». В XII веке Аделардом (Англия) и Иоанном Севельским (Испания) были сделаны два перевода книги на латинский язык.

Её оригинал не сохранился, но в 1857 году под названием «Алхорезми об индийском числе» был издан найденный латинский перевод. В трактате описывается выполнение с помощью индийских цифр на счётной доске таких арифметических действий, как сложение, вычитание, удвоение, умножение, раздвоение, деление и извлечение квадратного корня.

В 952–953 годах Абу-л-Хасан Ахмад ал-Уклидиси в своей «Книге разделов об индийской арифметике» использовал десятичные дроби при делении нечётных чисел пополам и некоторых других вычислениях. однако эта книга не оказала влияния на дальнейшее развитие. В начале XV века ал-Каши намеревался построить систему дробей, в которой все операции проводятся как с целыми числами и которая доступна тем, кто не знает «исчисления астрономов». В 1427 году ал-Каши описал систему десятичных дробей, которая получила распространение в Европе после сочинений Стевина в 1585 году. Таким образом, ал-Каши сформулировал основные правила действий с десятичными дробями, формулы перевода их в шестидесятеричные и обратно В своих работах ал-Хорезми производил простейшие операции с радикалами, которые представлялись более простыми, чем несоизмеримые отрезки, используемые в Древней Греции. Теория пропорций подверглась критическому анализу. В частности, выдающийся персидский математик, более известный нам как поэт Омар Хайям, в 1077 году в трактате «Комментарии к трудностям во введениях книги Евклида» говорил, что древнегреческое определение не отражает истинной сути пропорций. Хайям дал новое определение пропорции, ввёл отношения «больше» и «меньше», обобщил понятие положительного действительного числа.