Цена на дикорастущий женьшень в Китае громадная и, по рассказам манз, простирается до двух тысяч рублей серебром на наши деньги за один фунт корня. Возделываемый же на плантациях женьшень стоит несравненно дешевле и продается только по 40–50 руб. серебром за фунт.
Первая и, может быть, самая важная задача — получение растений или растительных тканей, из которых можно добывать полезные вещества. Их называют веществами вторичного метаболизма, в отличие от первичных метаболитов, которые необходимы самому растению в его «домашнем хозяйстве» и встречаются в клетках всех растений. В основном это вещества, ответственные за контакты с внешним миром, — например, эфирное масло или горечь, отпугивающие травоядных животных, либо компоненты аромата цветка. Они нужны растению, но без них оно прожить может, а вот без глюкозы — никак. Биохимические пути синтеза вторичных метаболитов — как бы надстройка над системой жизненно необходимых реакций. Но именно среди них встречаются уникальные лекарственные соединения.
В XIX веке европейцы знали о корне женьшеня в основном из книг знаменитых путешественников. Теперь препараты женьшеня продаются в каждой аптеке, его экстракты добавляют в косметику и тонизирующие напитки, и все это стоит совсем не дорого. На вопрос, каким образом целебный таежный корень попал из легенды на прилавки, покупатель в аптеке, подумав, отвечает: «Ну, его же окультурили, не собирают в тайге, а выращивают». Правильно, только растет женьшень восемь лет, и все это время посадки должна обслуживать целая армия людей. Гораздо практичнее выращивать в реакторах биомассу, производящую целебные вещества. В культуре можно получить до двух граммов сухой биомассы с одного литра среды за сутки (масса одного корня женьшеня на плантации увеличивается на 1–2 г в год).
Для промышленной биотехнологии мало нарастить каллусную ткань или суспензию, нужно еще настроить ее метаболизм на производство нужных веществ. В этом биотехнологам помогает целый корпус наук. Фитохимия изучает строение вторичных метаболитов и их локализацию в растениях — каждому травнику известно, что у одного растения полезен корень, у другого цветы, и ни в коем случае не наоборот. Биохимия растений исследует пути синтеза лекарственных веществ, физиология — их роль в жизнедеятельности растения. Все это необходимо знать, чтобы грамотно работать с культурами клеток.
Перечислять лекарственные растения, выращиваемые в биореакторах, можно долго, и список их все время растет. Культуры женьшеня настоящего, американского и японского производят тритерпеновые гликозиды гинзенозиды (панаксозиды). Из тиса ягодного получают таксол, или пакпитаксел, для лечения рака. Тис в Европе, как пишут ботанические энциклопедии, распространен мало и растет. он исключительно медленно — а между тем только во время испытаний нового противоракового препарата было уничтожено 12 тысяч деревьев. Стевия, из которой получают перспективный подсластитель стевиозид, растет только в Южной и Центральной Америке, а в наших широтах ее культивировать затруднительно: она не переносит температуры ниже +12 °C. В таких случаях биореакторы — вообще единственный выход. Диоскорея дельтовидная в культуре производит фуростаноловые гликозиды и диосгенин, из которого, в частности, получают гормональные препараты, раувольфия змеиная — алкалоид аймапин, применяемый как антиаритмическое средство…
Чаще всего для последующей экстракции в пробирках выращивают не растения, а каллусную ткань. В качестве экспланта берут ткань, богатую нужным веществом и способную к каллусогенезу. Например, у тиса это хвоя, у можжевельника сибирского, почки, побеги. Затем самое важное — подбор условий для оптимального биосинтеза и поиск штаммов-суперпродуцентов. А уже после этого приходит время переместиться из лабораторного сосуда в промышленный биореактор.
Он протянул мне пластиковый контейнер, разделенный на две части. Нижняя часть была заполнена какой-то жидкостью, в которую спускался стебель. В другой половине была большая, только что распустившаяся роза. В ту ужасную ночь она показалась мне бокалом кларета.
Замечали, как много стало на городских улицах киосков с надписью «Цветы»?
Пессимисты даже волнуются: каждый день привозят целые снопы безупречных роз и хризантем, и к вечеру они не до конца раскупаются — это ж какой убыток, раньше такого не бывало, да вправду ли это цветочная торговля или, может, прикрытие для криминальных структур? Насчет криминальных структур не знаем, но раньше такого действительно не было.
Одна из тех незаметных перемен, которые принесли в нашу жизнь биотехнологии: розы для каждого в любое время суток.
Здесь уже речь идет не о получении каллуса, а о клональном микроразмножении. Клональное — потому что все растения, выращенные таким путем, будут генетическими копиями «прародителя», от которого взят эксплант. (Да-да, если вы купили для своей девушки пять роз, то, возможно, это пять клонов одной и той же розы.) Микроразмножение — потому что из одного листа можно получить десятки растений.
Конечно, не всегда это бывает лист. Можно побудить к развитию уже существующую меристему, то есть растущую ткань — верхушку стебля, пазушные и спящие почки. Можно добиться того, чтобы почки появлялись уже в ткани экспланта, или же индуцировать соматический эмбриогенез — чтобы ткань порождала зародыши растения. Еще один метод — дифференциация почек из каллуса.
Эта технология произвела революцию в цветоводстве и садоводстве. Вегетативное размножение всегда имело огромную коммерческую значимость, а для некоторых видов цветов и плодовых деревьев оно практически не имело альтернативы. Никто не выращивает яблоню из косточки или тюльпаны из семян, все здравомыслящие люди приобретают саженцы и луковицы. К тому же семена — это результат полового размножения, а при половом процессе, как известно со времен Менделя, смешиваются признаки отцовского и материнского организмов. Для отбора и выживания наиболее приспособленных это полезно, поскольку повышает разнообразие, порождая новые комбинации признаков. Но садоводы обычно предпочитают стабильность — что изображено на фотографии в каталоге, то и должно вырасти, и никакой генетической лотереи.
Стабильность признаков при размножении семенами обеспечивается поддержанием чистых линий (которые получают, например, путем самоопыления), но вегетативное размножение зачастую бывает технически проще.
Однако не у всех видов оно возможно.
Сосны не черенкуются вообще, у разных видов орешника укореняется лишь 15–20 % черенков. Договориться с такими упрямыми растениями можно в лаборатории. Теоретически в любом растении есть клетки, которые могут проявить тотипотентность, если суметь подобрать к ним ключик.
Принципиальную возможность клонального микроразмножения впервые показал на орхидеях французский ученый Жорж Морель (1960). Из одного протокорма — шарообразной структуры, которая образуется после прорастания семени орхидеи, — за год он получил миллионы растений.
Было бы странно, если бы фирмы, торгующие цветами, декоративными и плодовыми культурами, не ухватились бы за эти технологии. «На одном квадратном метре можно разместить десять штативов, в каждом штативе 75 пробирок, и в каждой пробирке может быть от одного до трех растений, — рассказывает доктор биологических наук, Елена Анатольевна Калашникова, профессор кафедры генетики и биотехнологии Российского государственного аграрного университета — Тимирязевской сельскохозяйственной академии. — В итоге примерно полторы тысячи растений мы можем спокойно получать на квадратном метре». Этот первый этап экономит очень много труда и места.