Выбрать главу

При n > 1, очевидно, имеем

n! = (n–1)! · n. (3)

Мы хотим сохранить это же самое соотношение при n = 1. Подставляя в (3) n = 1, получаем

1! = 0!·1, (4)

откуда и следует (2).

Однако соотношение (4) нигде в курсе комбинаторики не

используется, и в результате остается непонятным, нельзя ли было положить 0! равным какому-нибудь другому числу, отличному от 1.

Выход из положения здесь, на наш взгляд, такой. Соображения (3), (4) можно (но не обязательно) рассказывать студентам в качестве дополнительного материала, но не стоит давать их непосредственно после формулы (2) для ее «оправдания».

Вместо этого, чтобы оправдать соглашение (2), на наш взгляд, следует сказать, что для того чтобы формулы, которые вскоре появятся, имели единообразный вид при всех n ≥ 0 (а не только при n ≥ 1) нужно, чтобы выражение

(5)

равнялось 1. (Действительно, как известно, каждое выражение вида при 0 < k < n представляет собой число сочетаний из n элементов по k элементов, т.е. число способов выбрать какие-нибудь k элементов из n данных элементов. При k = 0, очевидно, существует только один такой способ – не брать ни одного элемента.)

Поэтому неизбежно принятие соглашения (2). В результате, мы избегаем неприятного порочного круга в задаче: «Сколькими способами можно выбрать 0 элементов из n элементов?»

(Имеется в виду следующий порочный круг: «Число этих способов равно числу сочетаний из n элементов по 0 элементов, т.е. равно выражению (5). Подставляя в (5) определение (2) для 0!, получаем в ответе 1»).

9. ЗАДАЧА О СОСТАВЛЕНИИ БУКЕТА

Среди комбинаторных задач имеется серия таких, к которым правило произведения на первый взгляд неприменимо, и оттого эти задачи кажутся начинающему сложными. Однако при помощи простого рассуждения задачи этой серии могут быть переформулированы и затем решены именно с помощью вышеупомянутого правила произведения.

В качестве примера разберем одну из таких задач; прием, которым мы воспользуемся, заслуживает, на наш взгляд, специального рассмотрения на занятиях, посвященных комбинаторике.

Задача 1. Имеется 5 одуванчиков и 19 репейников. Сколькими способами можно составить из них букет, состоящий из трёх одуванчиков и семи репейников?

Решение. Букет, очевидно, представляет собой неупорядоченное множество, элементы которого выбираются из двух других непересекающихся неупорядоченных множеств – множества одуванчиков:

ОД = {ОД1, ОД2,..., ОД5} (1)

и множества репейников:

P = {Р1, Р2,..., Р19}. (2)

Существенно, однако, то, что каждому букету Б можно взаимно-однозначным образом сопоставить упорядоченную пару

Б ↔ ({три одуванчика); {семь репейников}). (3)

Это оказывается возможным только потому, что множества (1) и (2) не пересекаются!

Здесь, как это обычно принято, мы обозначаем неупорядоченные множества, перечисляя их элементы в фигурных скобках, а элементы упорядоченных множеств перечисляем в круглых скобках. Таким образом, элементами упорядоченной пары

({три одуванчика); {семь репейников}) (4)

являются два неупорядоченных множества.

Теперь в силу взаимной однозначности соответствия (3) заключаем, что численность множества Б (т.е. искомое число различных букетов заданного состава) равна численности множества упорядоченных пар вида (4).Тем самым, применяя правило произведения для нахождения этой численности, получаем

Ответ: искомое число способов равно ; здесь – число сочетаний из n элементов по k элементов.

Соображения вида (3) обычно считаются само собой разумеющимися и, как правило, опускаются в разделах, посвященных комбинаторике. Однако, на наш взгляд, проведенное рассуждение заслуживает большего внимания и, быть может, даже специального названия – например, «обобщенного правила произведения».

Разобранную выше задачу можно слегка видоизменить, причем изложенный выше прием снова продемонстрирует свою полезность.

Задача 2. Имеется 5 одуванчиков и 19 репейников. Сколькими способами можно составить из них букет, состоящий из десяти цветков и содержащий не менее трех одуванчиков?

Ответ:

10. О НЕКОТОРЫХ ТРУДНОСТЯХ