Выбрать главу

Поскольку квантовая механика играет уже упомянутую роль общей основы, мы изучаем ее с известной степенью математической строгости. Я буду вводить определения и аксиомы, потом описывать явления, которые из них проистекают, а затем иллюстрировать эти явления примерами из разных областей физики, преимущественно из оптики.

Основной математический инструмент квантовой механики — линейная алгебра. В приложении A приводятся концепции этой дисциплины, важные для квантовой физики. Так что, если вы знакомы с линейной алгеброй и свободно себя в ней чувствуете, переходите сразу к следующему разделу. В противном случае я рекомендовал бы вам, прежде чем двигаться дальше, изучить первые четыре раздела приложения A.

1.2. Постулат гильбертова пространства

Я сначала сформулирую этот постулат[3], а затем объясню его смысл более подробно.

a) Возможные состояния физической системы образуют гильбертово пространство над полем комплексных чисел.

b) Несовместимые квантовые состояния соответствуют ортогональным векторам.

c) Все векторы, представляющие физические квантовые состояния, нормированы.

Данный постулат содержит два понятия, которые мы еще не определили: квантовое состояние и физическая система. Понятия эти настолько фундаментальны, что строгое определение им дать трудно[4]. Поэтому я проиллюстрирую их интуитивно, на примерах.

Физическая система — это объект или даже одна либо несколько степеней свободы объекта, которые можно изучать независимо от остальных степеней свободы и других объектов. Например, если наш объект — атом, то квантовая механика может изучать его движение как целого (одна физическая система), а может исследовать движение его электронов вокруг ядра (другая физическая система). Но если мы хотим изучать образование из двух атомов молекулы, то нам следует учитывать, что динамические состояния обоих атомов и электронов в них влияют друг на друга, поэтому мы должны рассматривать все эти степени свободы как единую физическую систему. Если же речь идет о самой молекуле, то квантовая механика может изучать движение ее центра масс (одна физическая система), вращательное движение (другая физическая система), колебания ее атомов (третья система) или квантовые состояния ее электронов (четвертая система) и т. д.

Чтобы разобраться в понятии состояния, рассмотрим следующую физическую систему: массивную частицу, которая может двигаться вдоль координатной оси x. С одной стороны, возможно определить ее квантовое состояние, сказав, что «координата частицы — в точности x = 5 м». Это допустимое определение; мы будем обозначать такое состояние как |x = 5 м⟩. Еще одно допустимое состояние можно обозначить как |x = 3 м⟩. Эти состояния ортогональны (⟨x = 5 м| x = 3 м⟩ = 0), потому что «несовместимы»: если достоверно известно, что координата частицы равна 5 м, она не может быть обнаружена в состоянии x = 3 м. Еще один пример допустимого квантового состояния, в котором частица может находиться, — это «движется со скоростью 𝑣 = 4 м/с». Поскольку в таком состоянии импульс частицы известен точно, ее координата остается полностью неопределенной — т. е. данная частица может быть с некоторой вероятностью обнаружена в точке x = 5 м. Следовательно, скалярное произведение ⟨x = 5 м| 𝑣 = 4 м/с⟩ не равно нулю; эти состояния не являются несовместимыми.

Данный постулат гласит также, что если |x = 5 м⟩ и |x = 3 м⟩ — допустимые квантовые состояния, то состояние (где — нормирующий множитель, объяснение см. в упр. 1.1) также является допустимым. Называется оно суперпозицией состояний. Для большей наглядности скажем, что если |кошка жива⟩ и |кошка мертва⟩ — допустимые состояния физической системы «кошка», то допустима и суперпозиция этих состояний[5].

вернуться

3

Общепринятых постулатов квантовой механики не существует. Если вы скажете «Это следует из второго закона Ньютона», вас поймут, но утверждения «Это следует из первого постулата квантовой механики» никто не поймет. Вместо этого следует сказать, к примеру, «Это следует из линейности квантового гильбертова пространства».

вернуться

4

Как в геометрии, которая представляет собой чрезвычайно строгую науку, несмотря на то что первичные понятия в ней, такие как точка, прямая и плоскость, не определены.

вернуться

5

Это состояние иногда называют кошкой Шрёдингера в честь одного из отцов-основателей квантовой физики Эрвина Шрёдингера. На самом деле Шрёдингер говорил о более сложном объекте, см. отступление 2.5.