Выбрать главу

Являются ли суперпозиции состояний математической абстракцией или они каким-то образом отражаются в физическом поведении системы? Верно, конечно же, второе. Как мы вскоре увидим, если подвергнуть, например, кошку в состояниях   и просто случайную смесь состояний |кошка жива⟩ и |кошка мертва⟩ квантовому измерению, то результаты мы будем наблюдать совершенно разные.

Напрашивается еще один вопрос. Мы не видим состояний суперпозиции в повседневной жизни — хотя они полностью совместимы с канонами квантовой механики. Почему? Как мы узнаем из следующей главы, дело в том, что суперпозиции макроскопически различных состояний чрезвычайно хрупки и быстро переходят в один из своих компонентов — в случае кошки Шрёдингера та быстро становится либо живой, либо мертвой. В микроскопическом мире, однако, состояния суперпозиции относительно устойчивы и нужны для физического описания системы. Необходимость иметь дело с объектами, само существование которых вступает в противоречие с нашим повседневным опытом, — одна из причин того, почему квантовая механика так сложна для понимания.

Упражнение 1.1. Чему равен нормирующий множитель 𝒩 состояния кошки Шрёдингера |ψ⟩ = 𝒩 [2|жива⟩ + i|мертва⟩], гарантирующий, что |ψ⟩ — физическая система?

Упражнение 1.2. Какова размерность гильбертова пространства, связанного с одной кинетической степенью свободы массивной частицы?

Подсказка: если вам кажется, что ответ очевиден, загляните в решение.

1.3. Поляризация фотона

Мы начнем изучение квантовой механики с одной из простейших физических систем: поляризации фотона[6]. Размерность гильбертова пространства этой системы равна всего лишь двум, но этого вполне достаточно, чтобы показать, насколько поразительным может быть мир квантовой механики.

Предположим, что мы в состоянии выделить единичную частицу света — фотон — из поляризованной волны. Фотон — микроскопический объект, поэтому рассматривать его следует в рамках квантовой механики. Начнем с того, что определим связанное с ним гильбертово пространство. Для начала отметим, что горизонтально поляризованное состояние фотона, которое мы обозначим |H⟩, несовместимо с его вертикально поляризованным состоянием |V⟩: фотон |H⟩ невозможно обнаружить в состоянии |V⟩. То есть если мы приготовим горизонтально поляризованный фотон и прогоним его через поляризующий светоделитель (PBS, polarizing beam splitter) — оптический элемент, описанный в разд. В.2, то данный фотон во всех случаях будет проходить насквозь, а отражаться не будет никогда. Это означает, что состояния |H⟩ и |V⟩ ортогональны.

Мы постулируем, что световая волна, электрическое поле которой задано в виде функции координаты и времени [см. (В.2)]

(с действительными AH,V и ϕH,V), состоит из фотонов в состоянии[7]

Отступление 1.1. Открытие фотона

В 1900 г. Макс Планк объяснил экспериментально наблюдаемый спектр излучения абсолютно черного тела, введя понятие кванта света, который мы сегодня знаем как фотон[8]. Он обнаружил, что хорошее совпадение теории и эксперимента можно получить, если считать, что энергия фотона пропорциональна частоте ω световой волны. Коэффициент пропорциональности ℏ = 1,05457148 × 10−34 получил название постоянной Планка.

В 1905 г. Альберт Эйнштейн еще раз подтвердил обоснованность формулы Планка

E = ℏω,

воспользовавшись ей для количественного объяснения экспериментальных результатов по фотоэлектрическому эффекту (более подробно см. отступление 4.6[9]. Позже, в 1916 г., Эйнштейн сделал вывод, что, поскольку из классической электродинамики[10] известно, что электромагнитный волновой пакет, несущий энергию E, несет также импульс p = E/c, это же соотношение должно выполняться и для фотонов. По формуле Планка он нашел[11] p = ℏω/c. Выразив частоту волны через ее длину, он получил ω = 2πc/λ, а затем записал

p = 2πℏ/λ.

Артур Холли Комптон в 1923 г. использовал результаты Эйнштейна для теоретического объяснения собственных экспериментов, в которых он исследовал рассеяние рентгеновских лучей на свободных электронах[12]. Рассматривая фотоны рентгеновского излучения как частицы высоких энергий, он применил законы сохранения энергии и импульса к столкновению между фотоном и электроном, чтобы рассчитать энергию рассеянных фотонов в зависимости от угла рассеяния. Затем он соотнес эту энергию с длиной волны — и получил теоретическое описание для своих экспериментальных данных. Увиденное им превосходное совпадение тех и других стало служить наглядным доказательством существования фотона.

вернуться

6

Если вы не знакомы с понятием поляризации электромагнитной волны, то теперь самое время прочесть первые два раздела приложения В.

вернуться

7

Может показаться удивительным, что уравнение (1.2) не несет никакой информации о координате фотона по оси z. Причина в том, что этот фотон, будучи квантовой частицей, размазан в пространстве и времени. К факторам, влияющим на степень размазанности, относятся, в частности, характеристики источника, а также «объем квантования», выбранный для теоретического анализа. В случае лазерного луча длина фотона ограничивается длиной когерентности лазера, которая может составлять не один километр. В данной книге мы, как правило, будем считать, что фотоны размазаны на расстояние, намного превышающее размер любого прибора, и потому могут рассматриваться как бесконечно большие.

вернуться

8

M. Planck, Über das Gesetz der Energieverteilung im Normalspectrum, Annalen der Physik 4, 553 (1901).

вернуться

9

A. Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Annalen der Physik 17, 132 (1905).

вернуться

10

Это явление выражается, в частности, в эффекте давления света, который экспериментально наблюдал Петр Лебедев в 1900 г.

вернуться

11

Выражение для импульса фотона можно получить также следующим образом. Воспользовавшись знаменитым уравнением Эйнштейна E = mc2 и формулой Планка, мы можем рассчитать массу фотона M = ℏω/c2. Фотон движется со скоростью света, следовательно, его импульс равен p = Mc = ℏω/c.

вернуться

12

A. H. Compton, A Quantum Theory of the Scattering of X-Rays by Light Elements, Physical Review 21 483 (1923).