Мы называем комплексную величину eiϕ с действительным ϕ фазовым множителем. Умножение квантового состояния на фазовый множитель называется применением фазового сдвига на ϕ. Соответственно мы говорим, что применение фазового сдвига к квантовому состоянию не меняет его физических свойств. Как мы увидим в следующем разделе, это правило оказывается весьма общим: оно выполняется для всех физических систем, не только для электромагнитных волн. Разумеется, фазовый сдвиг должен быть глобальной природы (overall phase shift): если мы применим его только к части состояния, это состояние изменится. Например, если мы применим фазовый сдвиг на π/2 к вертикальному компоненту поляризованного под +45° фотона, то получим — фотон с правой круговой поляризацией, т. е. физически отличный от первоначального объекта.
Поляризация фотона — это реализация квантового бита (кубита). Данный термин используется для обозначения любой физической системы, гильбертово пространство которой двумерно, в контексте рассмотрения этой системы как носителя информации. Кубит — базовая единица квантовой информации, по аналогии с битом — единицей информации в классических компьютерах. В противоположность последнему квантовый бит может находиться не только в одном из двух базовых состояний, но и в их суперпозиции. Это открывает для нас множество новых технологических возможностей, которые мы будем обсуждать на протяжении всей книги.
1.4. Квантовые измерения
Второй постулат относится к квантовым измерениям, т. е. к экспериментам, цель которых — получить информацию о квантовом состоянии некоторой системы. В классической, макроскопической физике измерения больше вопрос технологии, чем фундаментальной науки. Дело в том, что там мы можем точно измерить состояние и эволюцию системы, не потревожив ее. Так, футбольный мяч не полетит разными способами в зависимости от того, пуст стадион или заполнен до отказа восторженными болельщиками, — следовательно, нам не нужно знать, каким методом фиксируют траекторию мяча, чтобы изучить законы его движения.
В квантовом мире ситуация выглядит иначе: мы велики, а те объекты, которые мы хотим измерить, малы. Поэтому любое измерение, скорее всего, изменит квантовое состояние нашей системы. В более общем плане можно сказать, что квантовые измерения — это события, при которых состояние микроскопического квантового объекта влияет на состояние макроскопического прибора. Таким образом, измерение пересекает границу между квантовым и классическим царствами физики. А как мы знаем, законы, управляющие ими, сильно различаются между собой. Чтобы получить цельную картину мира, нам необходимо понять, когда и как происходит переход между этими двумя «юрисдикциями».
Далее, явления, при которых квантовое состояние чего-то микроскопического влияет на что-то макроскопическое, не ограничены стенами лабораторий. К ним относятся самые разные события — от термодинамических фазовых переходов и лазерной генерации до ураганов, рождения черных дыр и, возможно, рождения самой Вселенной. Физика подобных явлений аналогична физике квантовых измерений. Из этого следует, что разобраться в этой физике необходимо для понимания природы окружающего нас мира.
Основные принципы постулата об измерениях можно вывести интуитивно. Предположим, что фотон в состоянии (1.2) попадает в поляризующий светоделитель (PBS) — оптический элемент, который пропускает горизонтально поляризованный свет, но отражает вертикально поляризованный (рис. 1.2 a). Что произойдет с этим фотоном? Если бы мы имели дело с классической волной (1.1), то сказали бы, что она разделится: часть ее пройдет сквозь PBS, а остальное отразится. Доли энергии, попадающие в прямой и отраженный каналы, были бы пропорциональны соответственно. Но фотон — это наименьшая порция энергии света, и его невозможно поделить на части.
Мы подошли к очевидному противоречию. Мы знаем, с одной стороны, что классическая волна, состоящая из фотонов, делится на части. С другой — что каждый отдельный фотон неделим. Как могут два этих требования выполняться одновременно?
Представляется, что единственный способ разрешить данный парадокс состоит в том, чтобы постулировать, что результат в таком случае будет случайным: фотон пройдет через PBS с вероятностью и отразится с вероятностью Таким образом, если на PBS попадет большое число N фотонов, то численное соотношение пропущенной и отраженной энергий составит