Как мы знаем, часть классической волны, проходящая через PBS, является горизонтально поляризованной, т. е. все фотоны, из которых состоит эта волна, находятся в состоянии |H⟩. Аналогично все фотоны отраженной волны находятся в состоянии |V⟩. Но тогда это же должно быть верно и в случае, когда фотоны попадают в PBS по одному. Фотон будет не только случайным образом выбирать свой путь, но также и, вполне в духе Оруэлла, изменять свое состояние, чтобы соответствовать выбранному пути. После PBS состояние фотона в прямом канале станет |H⟩, а в отраженном — |V⟩. Если мы поместим серию дополнительных PBS на пути фотона, прошедшего через первый светоделитель, то фотон пройдет также и через все эти PBS — никаких случайностей больше не будет.
Процесс, который я только что описал, представляет собой измерение состояния поляризации фотона. Чтобы его завершить, поместим по детектору одиночных фотонов (отступление 1.2) в оба выходящих канала PBS. Из этих двух детекторов один сработает («щелкнет» на квантовом жаргоне), снабдив нас информацией о характере поляризации фотона (рис. 1.2 a).
Описанный измерительный прибор предназначен для того, чтобы различать горизонтальную и вертикальную поляризации. Существуют и другие схемы. Например, наклонив PBS на 45°, мы заставим его пропускать состояние |+⟩ и отражать |—⟩, так что, если мы направим на такой PBS фотон в произвольном состоянии |ψ⟩, он пройдет или отразится с вероятностями pr+ = |⟨+|ψ⟩|2 и pr_ = |⟨-|ψ⟩|2 соответственно. Вообще, мы можем сконструировать измерительный прибор, различающий любые два состояния поляризации, при условии что эти состояния ортогональны друг другу.
Теперь мы готовы сформулировать наш постулат.
Отступление 1.2. Как обнаружить фотон?
Детектор фотонов представляет собой устройство, которое преобразует фотон в «щелчок» (click) — макроскопический импульс электрического тока или напряжения. Изготовить столь чувствительное устройство — непростая техническая задача. На рисунке схематично изображен один из современных способов выполнения этой задачи: сверхпроводящий детектор единичных фотонов.
Чувствительным элементом детектора является охлажденный до сверхпроводящего состояния нанопроводник, по которому течет небольшой постоянный ток. Нанопроводник настолько тонок, что при поглощении даже одного фотона он нагревается достаточно, чтобы стать резистивным на части длины. Ток, в соответствии с законом Джоуля — Ленца, начинает нагревать этот участок проводника, еще сильнее разрушая сверхпроводимость вокруг него. Развивается лавинообразный процесс, так что весь нанопроводник на какое-то время становится резистивным. Это сопротивление и дает на концах нанопроводника импульс напряжения, который несложно зарегистрировать.
У такого детектора есть несколько недостатков, типичных для реальных фотонных устройств. Во-первых, это недискриминирующий детектор: на пучок из множества фотонов он реагирует точно таким же импульсом, что и на одиночный фотон. Происходит это потому, что нанопроводник, сколько бы фотонов он ни поглотил, целиком теряет сверхпроводимость и приобретает одинаковое сопротивление (замечу, что в последнее время научились делать и дискриминирующие детекторы, использующие эту технологию). Во-вторых, фотон, попадающий на детектор, может отразиться — и тогда никакого щелчка не будет. Вероятность того, что на прилет одиночного фотона детектор отреагирует щелчком, известна как квантовая эффективность (quantum efficiency) детектора. В некоторых современных модификациях этот параметр превосходит 99 %. И в-третьих, детектор может выдать щелчок даже в отсутствие фотона. Частота таких темновых событий (dark counts) — еще одна важная техническая характеристика прибора.
Постулат об измерениях. Всякий идеальный измерительный прибор связан с некоторым ортонормальным базисом {|𝑣i⟩}. После измерения прибор случайным образом, с вероятностью
pri = |⟨𝑣i|ψ⟩|2, (1.3)
где |ψ⟩ — начальное состояние системы, укажет на одно из состояний |𝑣i⟩. Система при этом, если не разрушится, перейдет в состояние |𝑣i⟩ (спроецируется на него) (рис. 1.1).