Отступление 1.4. Квантовая инспекция военной техники
Вот любопытный парадокс, связанный с экспериментом по однофотонной интерференции, обсуждающийся в разд. 1.5[24]. Пусть имеется бомба, оборудованная датчиком фотонов и настроенная так, что взорвется, даже если датчик провзаимодействует с одним-единственным фотоном. Можем ли мы обнаружить присутствие бомбы в одном из каналов нашего интерферометра, не подорвав ее при этом?
Установим линию задержки в нашем однофотонном интерферометре (рис. 1.3) так, чтобы иметь ϕ = 0. Тогда если бомбы нет, то каждый попадающий в интерферометр фотон будет выходить из него поляризованным под углом +45° и вызывать срабатывание детектора «+». Детектор «−» в таком случае не будет срабатывать никогда.
Если же бомба есть, как показано на рисунке выше, она может взорваться или не взорваться в зависимости от того, каким путем проследует фотон. В этом смысле бомба проводит измерение типа Welcher Weg. Соответственно, фотон будет вести себя как частица, которая проходит случайным образом либо по верхнему, либо по нижнему маршруту интерферометра. Если он пойдет по нижнему маршруту, бомба взорвется. Но, если он пойдет поверху, бомба останется нетронутой, а фотон выйдет из интерферометра в состоянии вертикальной поляризации. При измерении в диагональном базисе он с равной вероятностью будет вызывать срабатывание каждого из двух детекторов.
Следовательно, если бомба имеется, у нас будет ненулевая вероятность услышать щелчок в детекторе «−». Более того, этот детектор может сработать только при наличии бомбы. Если он сработает, мы будем точно знать, что бомба в интерферометре есть — не потревожив ее при этом!
Вышеописанное устройство нельзя считать идеальным инструментом по инспекции вооружений, поскольку оно не гарантирует ни однозначного результата, ни того, что бомба все-таки не взорвется (см. упр. 1.17). Однако если поместить бомбу не в интерферометр Маха — Цендера, а в высокодобротный интерферометр Фабри — Перо, то можно получить эффективность, близкую к 100 %. В этом случае фотон с высокой вероятностью пройдет через интерферометр при отсутствии в нем бомбы, но отразится, если бомба в нем есть.
Конечно, дело обстоит именно так даже в том случае, если наблюдатель не смотрит на детекторы Welcher Weg. Тогда фотон находится в смешанном состоянии — он движется либо по верхнему, либо по нижнему пути интерферометра с вероятностью 1/2, — но уже не в состоянии суперпозиции. То есть вместо ситуации упр. 1.14 мы оказываемся в ситуации упр. 1.12. Состояние фотона утратило свою квантовую когерентность — четко определенное соотношение фаз между членами суперпозиции. А такой фотон больше не может демонстрировать интерференцию.
Этот мысленный эксперимент демонстрирует квантовую дополнительность (complementarity) — общий принцип квантовой физики, гласящий, что объекты могут обладать дополнительными свойствами, которые невозможно наблюдать или измерять одновременно. Мы можем получить либо информацию Welcher Weg, либо интерференцию, но не то и другое вместе.
Упражнение 1.17. В условиях, описанных в отступлении 1.4, чему равны вероятности:
a) обнаружения бомбы без ее взрыва;
b) взрыва бомбы;
c) получения результата, не свидетельствующего однозначно о наличии бомбы?
1.6. Квантовая криптография
Теперь мы можем обсудить первое в этом курсе практическое приложение квантовой физики. Это приложение — криптография, обмен тайными сообщениями по незащищенным каналам.
Искусство тайнописи, известное с древности, сегодня представляет собой крупную отрасль индустрии телекоммуникаций, защищающую информационную безопасность отдельных лиц, предприятий и правительственных учреждений. В отступлении 1.5 описаны классические подходы к криптографии. В одном предложении ее содержание заключается в том, что в рамках классической физики мы вынуждены выбирать между надежным, но дорогим одноключевым шифрованием и дешевым, но не полностью безопасным шифрованием с открытым ключом.
24
A. C. Elitzur, L. Vaidman,