Моя задача при написании этой книги состояла в том, чтобы изменить сложившуюся ситуацию. Я попытался выстроить ясную логическую структуру, в которой осталось бы как можно меньше дыр, которая позволила бы читателю по логической цепочке отследить любое заявление назад, до самых основ… Которая не оставила бы вопросов без ответов.
Итак, в определенном смысле я написал эту книгу для себя. Но не для сегодняшнего себя, а для того, каким я был в 18 лет. Такую книгу, которую я счастлив был бы на третьем курсе иметь в своей библиотеке и которая избавила бы меня от многолетних мучительных поисков истины.
Естественно спросить: «Насколько реалистична такая цель? Некоторые из поставленных выше вопросов представляются достаточно сложными. Может быть, без научной степени в них и не разобраться?»
Я дам двойной ответ. Во-первых, с педагогической точки зрения: механика с ее гильбертовым пространством бесконечной размерности едва ли оптимальна для иллюстрации квантовых принципов. Во многих приведенных выше вопросах можно разобраться, если использовать вместо механической более простую физическую систему; чуть позже я расскажу об этом подробнее. Во-вторых, бóльшую часть нестыковок и парадоксов вполне реально устранить, если правильно ввести понятие запутанности. Это понятие лежит в основе двух важных взаимосвязанных концепций: измерения фон Неймана и декогеренции. Первая из них обеспечивает способ избежать превращения измерения в некое исключительное явление в мире квантовой физики и таким образом устраняет логическую бутылку Клейна, характерную для копенгагенской интерпретации. Вторая описывает происходящие естественным образом «самопроизвольные» измерения, благодаря которым квантовый мир предстает перед макроскопическим и наблюдателями вроде нас в том виде, который мы знаем под именем «классическая физика».
Эти концепции не слишком сложны. Математически они намного проще многих элементов традиционного квантового курса, таких как уже упоминавшийся атом водорода или теория рассеяния. Главная трудность в понимании запутанности — не недостаток у студента необходимых математических навыков; она связана скорее с его воображением. Чтобы стать хорошим физиком, необходимо эту способность у себя развить; как говорил Эйнштейн, воображение на самом деле важнее знаний.
Квантовая механика или квантовая оптика?
Название нашей дисциплины — квантовая механика — подразумевает, что мы изучаем применение квантовых принципов к законам движения. На самом же деле рамки квантовой теории не ограничены механикой; она применима во всех областях физики. Если наша цель состоит в том, чтобы изучить общие принципы квантовой физики, то разумно ли выбирать именно механику в качестве физической системы для иллюстрации этих принципов?
Если мы задумаемся над этим вопросом всерьез, то вынуждены будем дать отрицательный ответ. Использование механики — в основном дань традиции, поскольку именно в механике исторически имело место первое успешное применение квантовых принципов в их современной форме. Но если говорить об обучении, то объяснение базовых квантовых принципов на примере механики — весьма неудачный подход. Гильбертово пространство, связанное с этой системой, имеет бесконечную размерность; более того, базис имеет мощность континуума. Студенту приходится иметь дело с незнакомым, чрезвычайно сложным и не всегда строгим математическим аппаратом, включающим в себя обобщенные функции, преобразование Фурье и функциональный анализ. В результате вместо того, чтобы сосредоточить усилия студентов на понимании физических концепций, мы заставляем их сражаться с математикой, а это зачастую ведет к путанице средств и целей. Трудно ожидать от подобного опыта сколько-нибудь глубокого понимания. Студент попросту не увидит за деревьями леса.
Если мы поставим перед собой выбор физической системы для иллюстрирования квантовой физики, нам следует взять ту, у которой гильбертово пространство обладает наименьшей нетривиальной размерностью, а именно — равной двум. Имеется множество таких систем, которые в настоящее время изучаются в контексте квантовых информационных технологий в качестве квантовых бит. Среди подобных систем выделяется одна как наиболее тщательно исследованная и интуитивно понятная: поляризация фотона. Как правило, студент, приступающий к изучению квантовой физики, успел уже освоить оптическую волновую поляризацию. Векторы поляризации Джонса напрямую транслируются в векторы состояния фотонной поляризации, а матрицы, описывающие трансформацию этих векторов различными волновыми пластинками, превращаются в операторы. Принимая во внимание дискретную природу фотона, несложно обосновать постулат квантового измерения из классической картины измерения поляризации. Таким образом, основные квантовые принципы выводятся из классической поляризационной оптики (и студенческого лабораторного опыта обращения с ней) самым простым и естественным образом.